
Cambridge Books Online

http://ebooks.cambridge.org/

Numerical Methods in Engineering with Python

Jaan Kiusalaas

Book DOI: http://dx.doi.org/10.1017/CBO9780511812224

Online ISBN: 9780511812224

Hardback ISBN: 9780521191326

Paperback ISBN: 9781107435933

Chapter

2 - Systems of Linear Algebraic Equations pp. 27-98

Chapter DOI: http://dx.doi.org/10.1017/CBO9780511812224.004

Cambridge University Press

2 Systems of Linear Algebraic Equations

Solve the simultaneous equations Ax = b

2.1 Introduction

In this chapter we look at the solution of n linear, algebraic equations in n unknowns.
It is by far the longest and arguably the most important topic in the book. There is a
good reason for this – it is almost impossible to carry out numerical analysis of any
sort without encountering simultaneous equations. Moreover, equation sets arising
from physical problems are often very large, consuming a lot of computational re-
sources. It is usually possible to reduce the storage requirements and the run time
by exploiting special properties of the coefficient matrix, such as sparseness (most
elements of a sparse matrix are zero). Hence, there are many algorithms dedicated to
the solution of large sets of equations, each one being tailored to a particular form of
the coefficient matrix (symmetric, banded, sparse, etc.). A well-known collection of
these routines is LAPACK – Linear Algebra PACKage, originally written in Fortran77.1

We cannot possibly discuss all the special algorithms in the limited space avail-
able. The best we can do is to present the basic methods of solution, supplemented
by a few useful algorithms for banded and sparse coefficient matrices.

Notation

A system of algebraic equations has the form

A 11x1 + A 12x2 + · · · + A 1nxn = b1

A 21x1 + A 22x2 + · · · + A 2nxn = b2 (2.1)

...

An1x1 + An2x2 + · · · + Annxn = bn

1 LAPACK is the successor of LINPACK, a 1970s and 80s collection of Fortran subroutines.

27

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.004

Cambridge Books Online © Cambridge University Press, 2016

28 Systems of Linear Algebraic Equations

where the coefficients Aij and the constants b j are known, and xi represent the un-
knowns. In matrix notation the equations are written as⎡

⎢⎢⎢⎢⎣
A 11 A 12 · · · A 1n

A 21 A 22 · · · A 2n

...
...

. . .
...

An1 An2 · · · Ann

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

x1

x2

...
xn

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

b1

b2

...
bn

⎤
⎥⎥⎥⎥⎦ (2.2)

or, simply,

Ax = b (2.3)

A particularly useful representation of the equations for computational purposes
is the augmented coefficient matrix obtained by adjoining the constant vector b to the
coefficient matrix A in the following fashion:

[
A b

]
=

⎡
⎢⎢⎢⎢⎣

A 11 A 12 · · · A 1n b1

A 21 A 22 · · · A 2n b2

...
...

. . .
...

...
An1 An2 · · · An3 bn

⎤
⎥⎥⎥⎥⎦ (2.4)

Uniqueness of Solution

A system of n linear equations in n unknowns has a unique solution, provided that
the determinant of the coefficient matrix is nonsingular; that is, |A| �= 0. The rows and
columns of a nonsingular matrix are linearly independent in the sense that no row (or
column) is a linear combination of other rows (or columns).

If the coefficient matrix is singular, the equations may have an infinite number of
solutions, or no solutions at all, depending on the constant vector. As an illustration,
take the equations

2x + y = 3 4x + 2y = 6

Because the second equation can be obtained by multiplying the first equation by 2,
any combination of x and y that satisfies the first equation is also a solution of the
second equation. The number of such combinations is infinite. On the other hand,
the equations

2x + y = 3 4x + 2y = 0

have no solution because the second equation, being equivalent to 2x + y = 0, con-
tradicts the first one. Therefore, any solution that satisfies one equation cannot sat-
isfy the other one.

Ill Conditioning

The obvious question is: what happens when the coefficient matrix is almost singu-
lar, that is, if |A| is very small? In order to determine whether the determinant of the

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.004

Cambridge Books Online © Cambridge University Press, 2016

29 2.1 Introduction

coefficient matrix is “small,” we need a reference against which the determinant can
be measured. This reference is called the norm of the matrix and is denoted by ‖A‖.
We can then say that the determinant is small if

|A| << ‖A‖

Several norms of a matrix have been defined in existing literature, such as the eu-
clidean norm

‖A‖e =
√√√√ n∑

i=1

n∑
j=1

A 2
ij (2.5a)

and the row-sum norm, also called the infinity norm

‖A‖∞ = max
1≤i≤n

n∑
j=1

∣∣Aij

∣∣ (2.5b)

A formal measure of conditioning is the matrix condition number, defined as

cond(A) = ‖A‖ ∥∥A−1
∥∥ (2.5c)

If this number is close to unity, the matrix is well conditioned. The condition number
increases with the degree of ill-conditioning, reaching infinity for a singular matrix.
Note that the condition number is not unique, but depends on the choice of the ma-
trix norm. Unfortunately, the condition number is expensive to compute for large
matrices. In most cases it is sufficient to gauge conditioning by comparing the deter-
minant with the magnitudes of the elements in the matrix.

If the equations are ill conditioned, small changes in the coefficient matrix result
in large changes in the solution. As an illustration, take the equations

2x + y = 3 2x + 1.001y = 0

that have the solution x = 1501.5, y = −3000. Because |A| = 2(1.001) − 2(1) = 0.002
is much smaller than the coefficients, the equations are ill conditioned. The effect of
ill-conditioning can be verified by changing the second equation to 2x + 1.002y = 0
and re-solving the equations. The result is x = 751.5, y = −1500. Note that a 0.1%
change in the coefficient of y produced a 100% change in the solution!

Numerical solutions of ill-conditioned equations are not to be trusted. The rea-
son is that the inevitable roundoff errors during the solution process are equiva-
lent to introducing small changes into the coefficient matrix. This in turn introduces
large errors into the solution, the magnitude of which depends on the severity of ill-
conditioning. In suspect cases the determinant of the coefficient matrix should be
computed so that the degree of ill-conditioning can be estimated. This can be done
during or after the solution with only a small computational effort.

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.004

Cambridge Books Online © Cambridge University Press, 2016

30 Systems of Linear Algebraic Equations

Linear Systems

Linear, algebraic equations occur in almost all branches of numerical analysis. But
their most visible application in engineering is in the analysis of linear systems
(any system whose response is proportional to the input is deemed to be linear).
Linear systems include structures, elastic solids, heat flow, seepage of fluids, elec-
tromagnetic fields, and electric circuits, that is, most topics taught in an engineering
curriculum.

If the system is discrete, such as a truss or an electric circuit, then its analysis
leads directly to linear algebraic equations. In the case of a statically determinate
truss, for example, the equations arise when the equilibrium conditions of the joints
are written down. The unknowns x1, x2, . . . , xn represent the forces in the members
and the support reactions, and the constants b1, b2, . . . , bn are the prescribed external
loads.

The behavior of continuous systems is described by differential equations, rather
than algebraic equations. However, because numerical analysis can deal only with
discrete variables, it is first necessary to approximate a differential equation with a
system of algebraic equations. The well-known finite difference, finite element, and
boundary element methods of analysis work in this manner. They use different ap-
proximations to achieve the “discretization,” but in each case the final task is the
same: to solve a system (often a very large system) of linear, algebraic equations.

In summary, the modeling of linear systems invariably gives rise to equations
of the form Ax = b, where b is the input and x represents the response of the sys-
tem. The coefficient matrix A, which reflects the characteristics of the system, is in-
dependent of the input. In other words, if the input is changed, the equations have
to be solved again with a different b, but the same A. Therefore, it is desirable to have
an equation-solving algorithm that can handle any number of constant vectors with
minimal computational effort.

Methods of Solution

There are two classes of methods for solving systems of linear, algebraic equations:
direct and iterative methods. The common characteristic of direct methods is that
they transform the original equations into equivalent equations (equations that have
the same solution) that can be solved more easily. The transformation is carried out
by applying the three operations listed here. These so-called elementary operations
do not change the solution, but they may affect the determinant of the coefficient
matrix as indicated in parentheses.

• Exchanging two equations (changes sign of |A|).
• Multiplying an equation by a non-zero constant (multiplies |A| by the same con-

stant).
• Multiplying an equation by a nonzero constant and then subtracting it from an-

other equation (leaves |A| unchanged).

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.004

Cambridge Books Online © Cambridge University Press, 2016

31 2.1 Introduction

Iterative or indirect methods start with a guess at the solution x, and then re-
peatedly refine the solution until a certain convergence criterion is reached. Itera-
tive methods are generally less efficient than their direct counterparts because of the
large number of iterations required. But they do have significant computational ad-
vantages if the coefficient matrix is very large and sparsely populated (most coeffi-
cients are zero).

Overview of Direct Methods

Table 2.1 lists three popular direct methods, each of which uses elementary opera-
tions to produce its own final form of easy-to-solve equations.

In the table, U represents an upper triangular matrix, L is a lower triangular ma-
trix, and I denotes the identity matrix. A square matrix is called triangular if it con-
tains only zero elements on one side of the leading diagonal. Thus, a 3 × 3 upper
triangular matrix has the form

U =

⎡
⎢⎣U11 U12 U13

0 U22 U23

0 0 U33

⎤
⎥⎦

and a 3 × 3 lower triangular matrix appears as

L =

⎡
⎢⎣L11 0 0

L21 L22 0
L31 L32 L33

⎤
⎥⎦

Triangular matrices play an important role in linear algebra, because they sim-
plify many computations. For example, consider the equations Lx = c, or

L11x1 = c1

L21x1 + L22x2 = c2

L31x1 + L32x2 + L33x3 = c3

If we solve the equations forward, starting with the first equation, the computations
are very easy, because each equation contains only one unknown at a time. The

Method Initial form Final form

Gauss elimination Ax = b Ux = c

LU decomposition Ax = b LUx = b

Gauss-Jordan elimination Ax = b Ix = c

Table 2.1

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.004

Cambridge Books Online © Cambridge University Press, 2016

32 Systems of Linear Algebraic Equations

solution would thus proceed as follows:

x1 = c1/L11

x2 = (c2 − L21x1)/L22

x3 = (c3 − L31x1 − L32x2)/L33

This procedure is known as forward substitution. In a similar way, Ux = c, encoun-
tered in Gauss elimination, can easily be solved by back substitution, which starts
with the last equation and proceeds backward through the equations.

The equations LUx = b, which are associated with LU decomposition, can also
be solved quickly if we replace them with two sets of equivalent equations: Ly = b
and Ux = y. Now Ly = b can be solved for y by forward substitution, followed by the
solution of Ux = y by means of back substitution.

The equations Ix = c, which are the produced by Gauss-Jordan elimination, are
equivalent to x = c (recall the identity Ix = x), so that c is already the solution.

EXAMPLE 2.1
Determine whether the following matrix is singular:

A =

⎡
⎢⎣2.1 −0.6 1.1

3.2 4.7 −0.8
3.1 −6.5 4.1

⎤
⎥⎦

Solution Laplace’s development of the determinant (see Appendix A2) about the first
row of A yields

|A| = 2.1

∣∣∣∣∣ 4.7 −0.8
−6.5 4.1

∣∣∣∣∣− (−0.6)

∣∣∣∣∣3.2 −0.8
3.1 4.1

∣∣∣∣∣+ 1.1

∣∣∣∣∣3.2 4.7
3.1 −6.5

∣∣∣∣∣
= 2.1(14.07) + 0.6(15.60) + 1.1(35.37) = 0

Because the determinant is zero, the matrix is singular. It can be verified that the
singularity is due to the following row dependency: (row 3) = (3 × row 1) − (row 2).

EXAMPLE 2.2
Solve the equations Ax = b, where

A =

⎡
⎢⎣ 8 −6 2

−4 11 −7
4 −7 6

⎤
⎥⎦ b =

⎡
⎢⎣ 28

−40
33

⎤
⎥⎦

knowing that the LU decomposition of the coefficient matrix is (you should verify
this)

A = LU =

⎡
⎢⎣ 2 0 0

−1 2 0
1 −1 1

⎤
⎥⎦
⎡
⎢⎣4 −3 1

0 4 −3
0 0 2

⎤
⎥⎦

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.004

Cambridge Books Online © Cambridge University Press, 2016

33 2.2 Gauss Elimination Method

Solution We first solve the equations Ly = b by forward substitution:

2y1 = 28 y1 = 28/2 = 14
−y1 + 2y2 = −40 y2 = (−40 + y1)/2 = (−40 + 14)/2 = −13
y1 − y2 + y3 = 33 y3 = 33 − y1 + y2 = 33 − 14 − 13 = 6

The solution x is then obtained from Ux = y by back substitution:

2x3 = y3 x3 = y3/2 = 6/2 = 3
4x2 − 3x3 = y2 x2 = (y2 + 3x3)/4 = [−13 + 3(3)] /4 = −1

4x1 − 3x2 + x3 = y1 x1 = (y1 + 3x2 − x3)/4 = [14 + 3(−1) − 3] /4 = 2

Hence, the solution is x =
[

2 −1 3
]T

.

2.2 Gauss Elimination Method

Introduction

Gauss elimination is the most familiar method for solving simultaneous equations. It
consists of two parts: the elimination phase and the solution phase. As indicated in
Table 2.1, the function of the elimination phase is to transform the equations into the
form Ux = c. The equations are then solved by back substitution. In order to illustrate
the procedure, let us solve the equations

4x1 − 2x2 + x3 = 11 (a)

−2x1 + 4x2 − 2x3 = −16 (b)

x1 − 2x2 + 4x3 = 17 (c)

Elimination Phase
The elimination phase utilizes only one of the elementary operations listed in Table
2.1 – multiplying one equation (say, equation j) by a constant λ and subtracting it
from another equation (equation i). The symbolic representation of this operation is

Eq. (i) ← Eq. (i) − λ × Eq. (j) (2.6)

The equation being subtracted, namely, Eq. (j), is called the pivot equation.
We start the elimination by taking Eq. (a) to be the pivot equation and choosing

the multipliers λ so as to eliminate x1 from Eqs. (b) and (c):

Eq. (b) ← Eq. (b) − (− 0.5) × Eq. (a)

Eq. (c) ← Eq. (c) − 0.25 × Eq. (a)

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.004

Cambridge Books Online © Cambridge University Press, 2016

34 Systems of Linear Algebraic Equations

After this transformation, the equations become

4x1 − 2x2 + x3 = 11 (a)

3x2 − 1.5x3 = −10.5 (b)

−1.5x2 + 3.75x3 = 14.25 (c)

This completes the first pass. Now we pick (b) as the pivot equation and eliminate x2

from (c):

Eq. (c) ← Eq. (c) − (− 0.5) × Eq.(b)

which yields the equations

4x1 − 2x2 + x3 = 11 (a)

3x2 − 1.5x3 = −10.5 (b)

3x3 = 9 (c)

The elimination phase is now complete. The original equations have been replaced
by equivalent equations that can be easily solved by back substitution.

As pointed out before, the augmented coefficient matrix is a more convenient
instrument for performing the computations. Thus, the original equations would be
written as ⎡

⎢⎣ 4 −2 1 11
−2 4 −2 −16

1 −2 4 17

⎤
⎥⎦

and the equivalent equations produced by the first and the second passes of Gauss
elimination would appear as

⎡
⎢⎣4 −2 1 11.00

0 3 −1.5 −10.50
0 −1.5 3.75 14.25

⎤
⎥⎦

⎡
⎢⎣4 −2 1 11.0

0 3 −1.5 −10.5
0 0 3 9.0

⎤
⎥⎦

It is important to note that the elementary row operation in Eq. (2.6) leaves the
determinant of the coefficient matrix unchanged. This is rather fortunate, since the
determinant of a triangular matrix is very easy to compute – it is the product of the
diagonal elements (you can verify this quite easily). In other words,

|A| = |U| = U11 × U22 × · · · × Unn (2.7)

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.004

Cambridge Books Online © Cambridge University Press, 2016

35 2.2 Gauss Elimination Method

Back Substitution Phase
The unknowns can now be computed by back substitution in the manner described
in the previous section. Solving Eqs. (c), (b), and (a) in that order, we get

x3 = 9/3 = 3

x2 = (−10.5 + 1.5x3)/3 = [−10.5 + 1.5(3)]/3 = −2

x1 = (11 + 2x2 − x3)/4 = [11 + 2(−2) − 3]/4 = 1

Algorithm for Gauss Elimination Method

Elimination Phase
Let us look at the equations at some instant during the elimination phase. Assume
that the first k rows of A have already been transformed to upper-triangular form.
Therefore, the current pivot equation is the kth equation, and all the equations be-
low it are still to be transformed. This situation is depicted by the augmented co-
efficient matrix shown next. Note that the components of A are not the coefficients
of the original equations (except for the first row), because they have been altered
by the elimination procedure. The same applies to the components of the constant
vector b.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A 11 A 12 A 13 · · · A 1k · · · A 1 j · · · A 1n b1

0 A 22 A 23 · · · A 2k · · · A 2 j · · · A 2n b2

0 0 A 33 · · · A 3k · · · A 3 j · · · A 3n b3

...
...

...
...

...
...

...
0 0 0 · · · A kk · · · A kj · · · A kn bk

...
...

...
...

...
...

...
0 0 0 · · · Aik · · · Aij · · · Ain bi

...
...

...
...

...
...

...
0 0 0 · · · Ank · · · Anj · · · Ann bn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

← pivot row

← row being
transformed

Let the ith row be a typical row below the pivot equation that is to be trans-
formed, meaning that the element Aik is to be eliminated. We can achieve this by
multiplying the pivot row by λ = Aik/A kk and subtracting it from the ith row. The
corresponding changes in the ith row are

Aij ← Aij − λA kj , j = k, k + 1, . . . , n (2.8a)

bi ← bi − λbk (2.8b)

In order to transform the entire coefficient matrix to upper-triangular form, k and
i in Eqs. (2.8) must have the ranges k = 1, 2, . . . , n − 1 (chooses the pivot row),

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.004

Cambridge Books Online © Cambridge University Press, 2016

36 Systems of Linear Algebraic Equations

i = k + 1, k + 2 . . . , n (chooses the row to be transformed). The algorithm for the
elimination phase now almost writes itself:

for k in range(0,n-1):

for i in range(k+1,n):

if a[i,k] != 0.0:

lam = a[i,k]/a[k,k]

a[i,k+1:n] = a[i,k+1:n] - lam*a[k,k+1:n]

b[i] = b[i] - lam*b[k]

In order to avoid unnecessary operations, this algorithm departs slightly from
Eqs. (2.8) in the following ways:

• If Aik happens to be zero, the transformation of row i is skipped.
• The index j in Eq. (2.8a) starts with k + 1 rather than k. Therefore, Aik is not re-

placed by zero, but retains its original value. As the solution phase never accesses
the lower triangular portion of the coefficient matrix anyway, its contents are ir-
relevant.

Back Substitution Phase
After Gauss elimination the augmented coefficient matrix has the form

[
A b

]
=

⎡
⎢⎢⎢⎢⎢⎢⎣

A 11 A 12 A 13 · · · A 1n b1

0 A 22 A 23 · · · A 2n b2

0 0 A 33 · · · A 3n b3

...
...

...
...

...
0 0 0 · · · Ann bn

⎤
⎥⎥⎥⎥⎥⎥⎦

The last equation, Annxn = bn, is solved first, yielding

xn = bn/Ann (2.9)

Consider now the stage of back substitution where xn, xn−1, . . . , xk+1 have been
already been computed (in that order), and we are about to determine xk from the
kth equation

A kk xk + A k,k+1xk+1 + · · · + A knxn = bk

The solution is

xk =
⎛
⎝bk −

n∑
j=k+1

A kj xj

⎞
⎠ 1

A kk
, k = n − 1, n − 2, . . . , 1 (2.10)

The corresponding algorithm for back substitution is:

for k in range(n-1,-1,-1):

x[k]=(b[k] - dot(a[k,k+1:n],x[k+1:n]))/a[k,k]

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.004

Cambridge Books Online © Cambridge University Press, 2016

37 2.2 Gauss Elimination Method

Operation Count
The execution time of an algorithm depends largely on the number of long opera-
tions (multiplications and divisions) performed. It can be shown that Gauss elimi-
nation contains approximately n3/3 such operations (n is the number of equations)
in the elimination phase, and n2/2 operations in back substitution. These numbers
show that most of the computation time goes into the elimination phase. Moreover,
the time increases very rapidly with the number of equations.

� gaussElimin

The function gaussElimin combines the elimination and the back substitution
phases. During back substitution b is overwritten by the solution vector x, so that
b contains the solution upon exit.

module gaussElimin

’’’ x = gaussElimin(a,b).

Solves [a]{b} = {x} by Gauss elimination.

’’’

from numpy import dot

def gaussElimin(a,b):

n = len(b)

Elimination phase

for k in range(0,n-1):

for i in range(k+1,n):

if a[i,k] != 0.0:

lam = a [i,k]/a[k,k]

a[i,k+1:n] = a[i,k+1:n] - lam*a[k,k+1:n]

b[i] = b[i] - lam*b[k]

Back substitution

for k in range(n-1,-1,-1):

b[k] = (b[k] - dot(a[k,k+1:n],b[k+1:n]))/a[k,k]

return b

Multiple Sets of Equations

As mentioned before, it is frequently necessary to solve the equations Ax = b for sev-
eral constant vectors. Let there be m such constant vectors, denoted by b1, b2, . . . , bm,
and let the corresponding solution vectors be x1, x2, . . . , xm. We denote multiple sets
of equations by AX = B, where

X =
[

x1 x2 · · · xm

]
B =

[
b1 b2 · · · bm

]
are n × m matrices whose columns consist of solution vectors and constant vectors,
respectively.

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.004

Cambridge Books Online © Cambridge University Press, 2016

38 Systems of Linear Algebraic Equations

An economical way to handle such equations during the elimination phase is
to include all m constant vectors in the augmented coefficient matrix, so that they
are transformed simultaneously with the coefficient matrix. The solutions are then
obtained by back substitution in the usual manner, one vector at a time. It would
be quite easy to make the corresponding changes in gaussElimin. However, the LU
decomposition method, described in the next section, is more versatile in handling
multiple constant vectors.

EXAMPLE 2.3
Use Gauss elimination to solve the equations AX = B, where

A =

⎡
⎢⎣ 6 −4 1

−4 6 −4
1 −4 6

⎤
⎥⎦ B =

⎡
⎢⎣−14 22

36 −18
6 7

⎤
⎥⎦

Solution The augmented coefficient matrix is⎡
⎢⎣ 6 −4 1 −14 22

−4 6 −4 36 −18
1 −4 6 6 7

⎤
⎥⎦

The elimination phase consists of the following two passes:

row 2 ← row 2 + (2/3) × row 1

row 3 ← row 3 − (1/6) × row 1

⎡
⎢⎣6 −4 1 −14 22

0 10/3 −10/3 80/3 −10/3
0 −10/3 35/6 25/3 10/3

⎤
⎥⎦

and

row 3 ← row 3 + row 2

⎡
⎢⎣6 −4 1 −14 22

0 10/3 −10/3 80/3 −10/3
0 0 5/2 35 0

⎤
⎥⎦

In the solution phase, we first compute x1 by back substitution:

X31 = 35
5/2

= 14

X21 = 80/3 + (10/3)X31

10/3
= 80/3 + (10/3)14

10/3
= 22

X11 = −14 + 4X21 − X31

6
= −14 + 4(22) − 14

6
= 10

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.004

Cambridge Books Online © Cambridge University Press, 2016

39 2.2 Gauss Elimination Method

Thus, the first solution vector is

x1 =
[

X11 X21 X31

]T
=
[

10 22 14
]T

The second solution vector is computed next, also using back substitution:

X32 = 0

X22 = −10/3 + (10/3)X32

10/3
= −10/3 + 0

10/3
= −1

X12 = 22 + 4X22 − X32

6
= 22 + 4(−1) − 0

6
= 3

Therefore,

x2 =
[

X12 X22 X32

]T
=
[

3 −1 0
]T

EXAMPLE 2.4
An n × n Vandermode matrix A is defined by

Aij = vn− j
i , i = 1, 2, . . . , n, j = 1, 2, . . . , n

where v is a vector. Use the function gaussElimin to compute the solution of Ax = b,
where A is the 6 × 6 the Vandermode matrix generated from the vector

v =
[

1.0 1.2 1.4 1.6 1.8 2.0
]T

and

b =
[

0 1 0 1 0 1
]T

Also evaluate the accuracy of the solution (Vandermode matrices tend to be ill con-
ditioned).

Solution

#!/usr/bin/python

example2_4

from numpy import zeros,array,prod,diagonal,dot

from gaussElimin import *

def vandermode(v):

n = len(v)

a = zeros((n,n))

for j in range(n):

a[:,j] = v**(n-j-1)

return a

v = array([1.0, 1.2, 1.4, 1.6, 1.8, 2.0])

b = array([0.0, 1.0, 0.0, 1.0, 0.0, 1.0])

a = vandermode(v)

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.004

Cambridge Books Online © Cambridge University Press, 2016

40 Systems of Linear Algebraic Equations

aOrig = a.copy() # Save original matrix

bOrig = b.copy() # and the constant vector

x = gaussElimin(a,b)

det = prod(diagonal(a))

print ’x =\n’,x

print ’\ndet =’,det

print ’\nCheck result: [a]{x} - b =\n’,dot(aOrig,x) - bOrig

raw_input("\nPress return to exit")

The program produced the following results:

x =

[416.66666667 -3125.00000004 9250.00000012 -13500.00000017

9709.33333345 -2751.00000003]

det = -1.13246207999e-006

Check result: [a]{x} - b =

[4.54747351e-13 2.27373675e-12 4.09272616e-12 1.50066626e-11

-5.00222086e-12 6.04813977e-11]

As the determinant is quite small relative to the elements of A (you may want to
print A to verify this), we expect detectable roundoff error. Inspection of x leads us to
suspect that the exact solution is

x =
[

1250/3 −3125 9250 −13500 29128/3 −2751
]T

in which case the numerical solution would be accurate to about 10 decimal places.
Another way to gauge the accuracy of the solution is to compute Ax − b (the result
should be 0). The printout indicates that the solution is indeed accurate to at least 10
decimal places.

2.3 LU Decomposition Methods

Introduction

It is possible to show that any square matrix A can be expressed as a product of a
lower triangular matrix L and an upper triangular matrix U:

A = LU (2.11)

The process of computing L and U for a given A is known as LU decomposition or
LU factorization. LU decomposition is not unique (the combinations of L and U for
a prescribed A are endless), unless certain constraints are placed on L or U. These
constraints distinguish one type of decomposition from another. Three commonly
used decompositions are listed in Table 2.2.

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.004

Cambridge Books Online © Cambridge University Press, 2016

41 2.3 LU Decomposition Methods

Name Constraints

Doolittle’s decomposition Lii = 1, i = 1, 2, ..., n

Crout’s decomposition Uii = 1, i = 1, 2, ..., n

Choleski’s decomposition L = UT

Table 2.2

After decomposing A, it is easy to solve the equations Ax = b, as pointed out
in Section 2.1. We first rewrite the equations as LUx = b. Upon using the notation
Ux = y, the equations become

Ly = b

which can be solved for y by forward substitution. Then

Ux = y

will yield x by the back substitution process.
The advantage of LU decomposition over the Gauss elimination method is that

once A is decomposed, we can solve Ax = b for as many constant vectors b as we
please. The cost of each additional solution is relatively small, since the forward and
back substitution operations are much less time consuming than the decomposition
process.

Doolittle’s Decomposition Method

Decomposition Phase
Doolittle’s decomposition is closely related to Gauss elimination. In order to illustrate
the relationship, consider a 3 × 3 matrix A and assume that there exist triangular ma-
trices

L =

⎡
⎢⎣ 1 0 0

L21 1 0
L31 L32 1

⎤
⎥⎦ U =

⎡
⎢⎣U11 U12 U13

0 U22 U23

0 0 U33

⎤
⎥⎦

such that A = LU. After completing the multiplication on the right-hand side, we get

A =

⎡
⎢⎣U11 U12 U13

U11 L21 U12 L21 + U22 U13 L21 + U23

U11 L31 U12 L31 + U22 L32 U13 L31 + U23 L32 + U33

⎤
⎥⎦ (2.12)

Let us now apply Gauss elimination to Eq. (2.12). The first pass of the elimina-
tion procedure consists of choosing the first row as the pivot row and applying the
elementary operations

row 2 ← row 2 − L21 × row 1 (eliminatesA 21)

row 3 ← row 3 − L31 × row 1 (eliminatesA 31)

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.004

Cambridge Books Online © Cambridge University Press, 2016

42 Systems of Linear Algebraic Equations

The result is

A′ =

⎡
⎢⎣U11 U12 U13

0 U22 U23

0 U22 L32 U23 L32 + U33

⎤
⎥⎦

In the next pass we take the second row as the pivot row and utilize the operation

row 3 ← row 3 − L32 × row 2 (eliminatesA 32)

ending up with

A′′ = U =

⎡
⎢⎣U11 U12 U13

0 U22 U23

0 0 U33

⎤
⎥⎦

The foregoing illustration reveals two important features of Doolittle’s decompo-
sition:

• The matrix U is identical to the upper triangular matrix that results from Gauss
elimination.

• The off-diagonal elements of L are the pivot equation multipliers used during
Gauss elimination, that is, Lij is the multiplier that eliminated Aij .

It is usual practice to store the multipliers in the lower triangular portion of the
coefficient matrix, replacing the coefficients as they are eliminated (Lij replacing Aij).
The diagonal elements of L do not have to be stored, because it is understood that
each of them is unity. The final form of the coefficient matrix would thus be the fol-
lowing mixture of L and U:

[L\U] =

⎡
⎢⎣U11 U12 U13

L21 U22 U23

L31 L32 U33

⎤
⎥⎦ (2.13)

The algorithm for Doolittle’s decomposition is thus identical to the Gauss elimi-
nation procedure in gaussElimin, except that each multiplier λ is now stored in the
lower triangular portion of A :

for k in range(0,n-1):

for i in range(k+1,n):

if a[i,k] != 0.0:

lam = a[i,k]/a[k,k]

a[i,k+1:n] = a[i,k+1:n] - lam*a[k,k+1:n]

a[i,k] = lam

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.004

Cambridge Books Online © Cambridge University Press, 2016

43 2.3 LU Decomposition Methods

Solution Phase
Consider now the procedure for the solution of Ly = b by forward substitution. The
scalar form of the equations is (recall that Lii = 1)

y1 = b1

L21y1 + y2 = b2

...

Lk1y1 + Lk2y2 + · · · + Lk,k−1yk−1 + yk = bk

...

Solving the kth equation for yk yields

yk = bk −
k−1∑
j=1

Lkj y j , k = 2, 3, ..., n (2.14)

Therefore, the forward substitution algorithm is

y[0] = b[0]

for k in range(1,n):

y[k] = b[k] - dot(a[k,0:k],y[0:k])

The back substitution phase for solving Ux = y is identical to what was used in
the Gauss elimination method.

� LUdecomp

This module contains both the decomposition and solution phases. The decompo-
sition phase returns the matrix [L\U] shown in Eq. (2.13). In the solution phase, the
contents of b are replaced by y during forward substitution Similarly, the back sub-
stitution overwrites y with the solution x.

module LUdecomp

’’’ a = LUdecomp(a).

LU decomposition: [L][U] = [a]. The returned matrix

[a] = [L\U] contains [U] in the upper triangle and

the nondiagonal terms of [L] in the lower triangle.

x = LUsolve(a,b).

Solves [L][U]{x} = b, where [a] = [L\U] is the matrix

returned from LUdecomp.

’’’

from numpy import dot

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.004

Cambridge Books Online © Cambridge University Press, 2016

44 Systems of Linear Algebraic Equations

def LUdecomp(a):

n = len(a)

for k in range(0,n-1):

for i in range(k+1,n):

if a[i,k] != 0.0:

lam = a [i,k]/a[k,k]

a[i,k+1:n] = a[i,k+1:n] - lam*a[k,k+1:n]

a[i,k] = lam

return a

def LUsolve(a,b):

n = len(a)

for k in range(1,n):

b[k] = b[k] - dot(a[k,0:k],b[0:k])

for k in range(n-1,-1,-1):

b[k] = (b[k] - dot(a[k,k+1:n],b[k+1:n]))/a[k,k]

return b

Choleski’s Decomposition Method

Choleski’s decomposition A = LLT has two limitations:

• Because LLT is always a symmetric matrix, Choleski’s decomposition requires A
to be symmetric.

• The decomposition process involves taking square roots of certain combinations
of the elements of A. It can be shown that in order to avoid square roots of nega-
tive numbers A must be positive definite.

Choleski’s decomposition contains approximately n3/6 long operations plus n
square root computations. This is about half the number of operations required in
LU decomposition. The relative efficiency of Choleski’s decomposition is due to its
exploitation of symmetry.

Let us start by looking at Choleski’s decomposition

A = LLT (2.15)

of a 3 × 3 matrix:⎡
⎢⎣A 11 A 12 A 13

A 21 A 22 A 23

A 31 A 32 A 33

⎤
⎥⎦ =

⎡
⎢⎣L11 0 0

L21 L22 0
L31 L32 L33

⎤
⎥⎦
⎡
⎢⎣L11 L21 L31

0 L22 L32

0 0 L33

⎤
⎥⎦

After completing the matrix multiplication on the right-hand side, we get⎡
⎢⎣A 11 A 12 A 13

A 21 A 22 A 23

A 31 A 32 A 33

⎤
⎥⎦ =

⎡
⎢⎣L2

11 L11 L21 L11 L31

L11 L21 L2
21 + L2

22 L21 L31 + L22 L32

L11 L31 L21 L31 + L22 L32 L2
31 + L2

32 + L2
33

⎤
⎥⎦ (2.16)

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.004

Cambridge Books Online © Cambridge University Press, 2016

45 2.3 LU Decomposition Methods

Note that the right-hand-side matrix is symmetric, as pointed out before. Equating
the matrices A and LLT element by element, we obtain six equations (because of sym-
metry only lower or upper triangular elements have to be considered) in the six un-
known components of L. By solving these equations in a certain order, it is possible
to have only one unknown in each equation.

Consider the lower triangular portion of each matrix in Eq. (2.16) (the upper tri-
angular portion would do as well). By equating the elements in the first column, start-
ing with the first row and proceeding downward, we can compute L11, L21, and L31

in that order:

A 11 = L2
11 L11 =

√
A 11

A 21 = L11 L21 L21 = A 21/L11

A 31 = L11 L31 L31 = A 31/L11

The second column, starting with second row, yields L22 and L32:

A 22 = L2
21 + L2

22 L22 =
√

A 22 − L2
21

A 32 = L21 L31 + L22 L32 L32 = (A 32 − L21 L31)/L22

Finally, the third column, third row gives us L33:

A 33 = L2
31 + L2

32 + L2
33 L33 =

√
A 33 − L2

31 − L2
32

We can now extrapolate the results for an n × n matrix. We observe that a typical
element in the lower triangular portion of LLT is of the form

(LLT)ij = Li1 L j 1 + Li2 L j 2 + · · · + Lij L j j =
j∑

k=1

Lik L j k , i ≥ j

Equating this term to the corresponding element of A yields

Aij =
j∑

k=1

Lik L j k , i = j , j + 1, . . . , n, j = 1, 2, . . . , n (2.17)

The range of indices shown limits the elements to the lower triangular part. For the
first column (j = 1), we obtain from Eq. (2.17)

L11 =
√

A 11 Li1 = Ai1/L11, i = 2, 3, ..., n (2.18)

Proceeding to other columns, we observe that the unknown in Eq. (2.17) is Lij (the
other elements of L appearing in the equation have already been computed). Taking
the term containing Lij outside the summation in Eq. (2.17), we obtain

Aij =
j−1∑
k=1

Lik L j k + Lij L j j

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.004

Cambridge Books Online © Cambridge University Press, 2016

46 Systems of Linear Algebraic Equations

If i = j (a diagonal term), the solution is

L j j =
√√√√A j j −

j−1∑
k=1

L2
j k , j = 2, 3, ..., n (2.19)

For a nondiagonal term we get

Lij =
⎛
⎝Aij −

j−1∑
k=1

Lik L j k

⎞
⎠ /L j j , j = 2, 3, . . . , n − 1, i = j + 1, j + 2, . . . , n (2.20)

� choleski

Before presenting the algorithm for Choleski’s decomposition, we make a useful ob-
servation: Aij appears only in the formula for Lij . Therefore, once Lij has been com-
puted, Aij is no longer needed. This makes it possible to write the elements of L
over the lower triangular portion of A as they are computed. The elements above the
leading diagonal of A will remain untouched. The function listed next implements
Choleski’s decomposition. If a negative diagonal term is encountered during decom-
position, an error message is printed and the program is terminated.

After the coefficient matrix A has been decomposed, the solution of Ax = b can
be obtained by the usual forward and back substitution operations. The function
choleskiSol (given here without derivation) carries out the solution phase.

module choleski

’’’ L = choleski(a)

Choleski decomposition: [L][L]transpose = [a]

x = choleskiSol(L,b)

Solution phase of Choleski’s decomposition method

’’’

from numpy import dot

from math import sqrt

import error

def choleski(a):

n = len(a)

for k in range(n):

try:

a[k,k] = sqrt(a[k,k] - dot(a[k,0:k],a[k,0:k]))

except ValueError:

error.err(’Matrix is not positive definite’)

for i in range(k+1,n):

a[i,k] = (a[i,k] - dot(a[i,0:k],a[k,0:k]))/a[k,k]

for k in range(1,n): a[0:k,k] = 0.0

return a

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.004

Cambridge Books Online © Cambridge University Press, 2016

47 2.3 LU Decomposition Methods

def choleskiSol(L,b):

n = len(b)

Solution of [L]{y} = {b}

for k in range(n):

b[k] = (b[k] - dot(L[k,0:k],b[0:k]))/L[k,k]

Solution of [L_transpose]{x} = {y}

for k in range(n-1,-1,-1):

b[k] = (b[k] - dot(L[k+1:n,k],b[k+1:n]))/L[k,k]

return b

Other Methods

Crout’s Decomposition
Recall that the various decompositions A = LU are characterized by the constraints
placed on the elements of L or U. In Doolittle’s decomposition, the diagonal elements
of L were set to 1. An equally viable method is Crout’s decomposition, where the 1’s lie
on the diagonal of U. There is little difference in the performance of the two methods.

Gauss–Jordan Elimination
The Gauss–Jordan method is essentially Gauss elimination taken to its limit. In the
Gauss elimination method only the equations that lie below the pivot equation are
transformed. In the Gauss–Jordan method the elimination is also carried out on
equations above the pivot equation, resulting in a diagonal coefficient matrix.

The main disadvantage of Gauss–Jordan elimination is that it involves about n3/2
long operations, which is 1.5 times the number required in Gauss elimination.

EXAMPLE 2.5
Use Doolittle’s decomposition method to solve the equations Ax = b, where

A =

⎡
⎢⎣1 4 1

1 6 −1
2 −1 2

⎤
⎥⎦ b =

⎡
⎢⎣ 7

13
5

⎤
⎥⎦

Solution We first decompose A by Gauss elimination. The first pass consists of the
elementary operations

row 2 ← row 2 − 1 × row 1 (eliminates A 21)

row 3 ← row 3 − 2 × row 1 (eliminates A 31)

Storing the multipliers L21 = 1 and L31 = 2 in place of the eliminated terms, we ob-
tain

A′ =

⎡
⎢⎣1 4 1

1 2 −2
2 −9 0

⎤
⎥⎦

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.004

Cambridge Books Online © Cambridge University Press, 2016

48 Systems of Linear Algebraic Equations

The second pass of Gauss elimination uses the operation

row 3 ← row 3 − (−4.5) × row 2 (eliminates A 32)

Storing the multiplier L32 = −4.5 in place of A 32, we get

A′′ = [L\U] =

⎡
⎢⎣1 4 1

1 2 −2
2 −4.5 −9

⎤
⎥⎦

The decomposition is now complete, with

L =

⎡
⎢⎣1 0 0

1 1 0
2 −4.5 1

⎤
⎥⎦ U =

⎡
⎢⎣1 4 1

0 2 −2
0 0 −9

⎤
⎥⎦

Solution of Ly = b by forward substitution comes next. The augmented coeffi-
cient form of the equations is

[
L b

]
=

⎡
⎢⎣1 0 0 7

1 1 0 13
2 −4.5 1 5

⎤
⎥⎦

The solution is

y1 = 7

y2 = 13 − y1 = 13 − 7 = 6

y3 = 5 − 2y1 + 4.5y2 = 5 − 2(7) + 4.5(6) = 18

Finally, the equations Ux = y, or

[
U y

]
=

⎡
⎢⎣1 4 1 7

0 2 −2 6
0 0 −9 18

⎤
⎥⎦

are solved by back substitution. This yields

x3 = 18
−9

= −2

x2 = 6 + 2x3

2
= 6 + 2(−2)

2
= 1

x1 = 7 − 4x2 − x3 = 7 − 4(1) − (−2) = 5

EXAMPLE 2.6
Compute Choleski’s decomposition of the matrix

A =

⎡
⎢⎣ 4 −2 2

−2 2 −4
2 −4 11

⎤
⎥⎦

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.004

Cambridge Books Online © Cambridge University Press, 2016

49 2.3 LU Decomposition Methods

Solution First, we note that A is symmetric. Therefore, Choleski’s decomposition is
applicable, provided that the matrix is also positive definite. An a priori test for posi-
tive definiteness is not needed, since the decomposition algorithm contains its own
test: if the square root of a negative number is encountered, the matrix is not positive
definite and the decomposition fails.

Substituting the given matrix for A in Eq. (2.16) we obtain⎡
⎢⎣ 4 −2 2

−2 2 −4
2 −4 11

⎤
⎥⎦ =

⎡
⎢⎣L2

11 L11 L21 L11 L31

L11 L21 L2
21 + L2

22 L21 L31 + L22 L32

L11 L31 L21 L31 + L22 L32 L2
31 + L2

32 + L2
33

⎤
⎥⎦

Equating the elements in the lower (or upper) triangular portions yields

L11 =
√

4 = 2

L21 = −2/L11 = −2/2 = −1

L31 = 2/L11 = 2/2 = 1

L22 =
√

2 − L2
21 =

√
2 − 12 = 1

L32 = −4 − L21 L31

L22
= −4 − (−1)(1)

1
= −3

L33 =
√

11 − L2
31 − L2

32 =
√

11 − (1)2 − (−3)2 = 1

Therefore,

L =

⎡
⎢⎣ 2 0 0

−1 1 0
1 −3 1

⎤
⎥⎦

The result can easily be verified by performing the multiplication LLT .

EXAMPLE 2.7
Write a program that solves AX = B with Doolittle’s decomposition method and com-
putes |A|. Utilize the functions LUdecomp and LUsolve. Test the program with

A =

⎡
⎢⎣ 3 −1 4

−2 0 5
7 2 −2

⎤
⎥⎦ B =

⎡
⎢⎣6 −4

3 2
7 −5

⎤
⎥⎦

Solution

#!/usr/bin/python

example2_7

from numpy import array,prod,diagonal

from LUdecomp import *

a = array([[3.0, -1.0, 4.0], \

[-2.0, 0.0, 5.0], \

[7.0, 2.0, -2.0]])

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.004

Cambridge Books Online © Cambridge University Press, 2016

50 Systems of Linear Algebraic Equations

b = array([[6.0, 3.0, 7.0], \

[-4.0, 2.0, -5.0]])

a = LUdecomp(a) # Decompose [a]

det = prod(diagonal(a))

print "\nDeterminant =",det

for i in range(len(b)): # Back-substitute one

x = LUsolve(a,b[i]) # constant vector at a time

print "x",i+1,"=",x

raw_input("\nPress return to exit")

Running the program produced the following display:

Determinant = -77.0

x 1 = [1. 1. 1.]

x 2 = [-1.00000000e+00 1.00000000e+00 2.30695693e-17]

EXAMPLE 2.8
Solve the equations Ax = b by Choleski’s decomposition, where

A =

⎡
⎢⎢⎢⎣

1.44 −0.36 5.52 0.00
−0.36 10.33 −7.78 0.00

5.52 −7.78 28.40 9.00
0.00 0.00 9.00 61.00

⎤
⎥⎥⎥⎦ b =

⎡
⎢⎢⎢⎣

0.04
−2.15

0
0.88

⎤
⎥⎥⎥⎦

Also check the solution.

Solution

#!/usr/bin/python

example2_8

from numpy import array,dot

from choleski import *

a = array([[1.44, -0.36, 5.52, 0.0], \

[-0.36, 10.33, -7.78, 0.0], \

[5.52, -7.78, 28.40, 9.0], \

[0.0, 0.0, 9.0, 61.0]])

b = array([0.04, -2.15, 0.0, 0.88])

aOrig = a.copy()

L = choleski(a)

x = choleskiSol(L,b)

print "x =",x

print ’\nCheck: A*x =\n’,dot(aOrig,x)

raw_input("\nPress return to exit")

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.004

Cambridge Books Online © Cambridge University Press, 2016

51 2.3 LU Decomposition Methods

The output is:

x = [3.09212567 -0.73871706 -0.8475723 0.13947788]

Check: A*x =

[4.00000000e-02 -2.15000000e+00 -5.10702591e-15 8.80000000e-01]

PROBLEM SET 2.1

1. By evaluating the determinant, classify the following matrices as singular, ill con-
ditioned, or well conditioned.

(a) A =

⎡
⎢⎣1 2 3

2 3 4
3 4 5

⎤
⎥⎦ (b) A =

⎡
⎢⎣ 2.11 −0.80 1.72

−1.84 3.03 1.29
−1.57 5.25 4.30

⎤
⎥⎦

(c) A =

⎡
⎢⎣ 2 −1 0

−1 2 −1
0 −1 2

⎤
⎥⎦ (d) A =

⎡
⎢⎣4 3 −1

7 −2 3
5 −18 13

⎤
⎥⎦

2. Given the LU decomposition A = LU, determine A and |A| .

(a) L =

⎡
⎢⎣1 0 0

1 1 0
1 5/3 1

⎤
⎥⎦ U =

⎡
⎢⎣1 2 4

0 3 21
0 0 0

⎤
⎥⎦

(b) L =

⎡
⎢⎣ 2 0 0

−1 1 0
1 −3 1

⎤
⎥⎦ U =

⎡
⎢⎣2 −1 1

0 1 −3
0 0 1

⎤
⎥⎦

3. Utilize the results of LU decomposition

A = LU =

⎡
⎢⎣ 1 0 0

3/2 1 0
1/2 11/13 1

⎤
⎥⎦
⎡
⎢⎣2 −3 −1

0 13/2 −7/2
0 0 32/13

⎤
⎥⎦

to solve Ax = b, where bT =
[

1 −1 2
]
.

4. Use Gauss elimination to solve the equations Ax = b, where

A =

⎡
⎢⎣2 −3 −1

3 2 −5
2 4 −1

⎤
⎥⎦ b =

⎡
⎢⎣ 3

−9
−5

⎤
⎥⎦

5. Solve the equations AX = B by Gauss elimination, where

A =

⎡
⎢⎢⎢⎣

2 0 −1 0
0 1 2 0

−1 2 0 1
0 0 1 −2

⎤
⎥⎥⎥⎦ B =

⎡
⎢⎢⎢⎣

1 0
0 0
0 1
0 0

⎤
⎥⎥⎥⎦

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.004

Cambridge Books Online © Cambridge University Press, 2016

52 Systems of Linear Algebraic Equations

6. Solve the equations Ax = b by Gauss elimination, where

A =

⎡
⎢⎢⎢⎢⎢⎣

0 0 2 1 2
0 1 0 2 −1
1 2 0 −2 0
0 0 0 −1 1
0 1 −1 1 −1

⎤
⎥⎥⎥⎥⎥⎦ b =

⎡
⎢⎢⎢⎢⎢⎣

1
1

−4
−2
−1

⎤
⎥⎥⎥⎥⎥⎦

Hint: reorder the equations before solving.
7. Find L and U so that

A = LU =

⎡
⎢⎣ 4 −1 0

−1 4 −1
0 −1 4

⎤
⎥⎦

using (a) Doolittle’s decomposition; (b) Choleski’s decomposition.
8. Use Doolittle’ decomposition method to solve Ax = b, where

A =

⎡
⎢⎣ −3 6 −4

9 −8 24
−12 24 −26

⎤
⎥⎦ b =

⎡
⎢⎣ −3

65
−42

⎤
⎥⎦

9. Solve the equations AX = b by Doolittle’s decomposition method, where

A =

⎡
⎢⎣ 2.34 −4.10 1.78

−1.98 3.47 −2.22
2.36 −15.17 6.18

⎤
⎥⎦ b =

⎡
⎢⎣ 0.02

−0.73
−6.63

⎤
⎥⎦

10. Solve the equations AX = B by Doolittle’s decomposition method, where

A =

⎡
⎢⎣ 4 −3 6

8 −3 10
−4 12 −10

⎤
⎥⎦ B =

⎡
⎢⎣1 0

0 1
0 0

⎤
⎥⎦

11. Solve the equations Ax = b by Choleski’s decomposition method, where

A =

⎡
⎢⎣1 1 1

1 2 2
1 2 3

⎤
⎥⎦ b =

⎡
⎢⎣ 1

3/2
3

⎤
⎥⎦

12. Solve the equations

⎡
⎢⎣ 4 −2 −3

12 4 −10
−16 28 18

⎤
⎥⎦
⎡
⎢⎣ x1

x2

x3

⎤
⎥⎦ =

⎡
⎢⎣ 1.1

0
−2.3

⎤
⎥⎦

by Doolittle’s decomposition method.

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.004

Cambridge Books Online © Cambridge University Press, 2016

53 2.3 LU Decomposition Methods

13. Determine L that results from Choleski’s decomposition of the diagonal matrix

A =

⎡
⎢⎢⎢⎢⎣

α1 0 0 · · ·
0 α2 0 · · ·
0 0 α3 · · ·
...

...
...

. . .

⎤
⎥⎥⎥⎥⎦

14. � Modify the function gaussElimin so that it will work with m constant vectors.
Test the program by solving AX = B, where

A =

⎡
⎢⎣ 2 −1 0

−1 2 −1
0 −1 2

⎤
⎥⎦ B =

⎡
⎢⎣1 0 0

0 1 0
0 0 1

⎤
⎥⎦

15. � A well-known example of an ill-conditioned matrix is the Hilbert matrix

A =

⎡
⎢⎢⎢⎢⎣

1 1/2 1/3 · · ·
1/2 1/3 1/4 · · ·
1/3 1/4 1/5 · · ·

...
...

...
. . .

⎤
⎥⎥⎥⎥⎦

Write a program that specializes in solving the equations Ax = b by Doolittle’s
decomposition method, where A is the Hilbert matrix of arbitrary size n × n, and

bi =
n∑

j=1

Aij

The program should have no input apart from n. By running the program, de-
termine the largest n for which the solution is within 6 significant figures of the
exact solution

x =
[

1 1 1 · · ·
]T

16. Derive the forward and back substitution algorithms for the solution phase of
Choleski’s method. Compare them with the function choleskiSol.

17. � Determine the coefficients of the polynomial y = a0 + a1x + a2x2 + a3x3 that
passes through the points (0, 10), (1, 35), (3, 31), and (4, 2).

18. � Determine the fourth-degree polynomial y(x) that passes through the points
(0, −1), (1, 1), (3, 3), (5, 2), and (6, −2).

19. � Find the fourth-degree polynomial y(x) that passes through the points (0, 1),
(0.75, −0.25), and (1, 1) and has zero curvature at (0, 1) and (1, 1).

20. � Solve the equations Ax = b, where

A =

⎡
⎢⎢⎢⎣

3.50 2.77 −0.76 1.80
−1.80 2.68 3.44 −0.09

0.27 5.07 6.90 1.61
1.71 5.45 2.68 1.71

⎤
⎥⎥⎥⎦ b =

⎡
⎢⎢⎢⎣

7.31
4.23

13.85
11.55

⎤
⎥⎥⎥⎦

By computing |A| and Ax, comment on the accuracy of the solution.

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.004

Cambridge Books Online © Cambridge University Press, 2016

54 Systems of Linear Algebraic Equations

21. Compute the condition number of the matrix

A =

⎡
⎢⎣1 −1 −1

0 1 −2
0 0 1

⎤
⎥⎦

based on (a) the euclidean norm and (b) the infinity norm. You may use the func-
tion inv(A)in numpy.linalg to determine the inverse of A.

22. � Write a function that returns the condition number of a matrix based on the
euclidean norm. Test the function by computing the condition number of the
ill-conditioned matrix

A =

⎡
⎢⎢⎢⎣

1 4 9 16
4 9 16 25
9 16 25 36

16 25 36 49

⎤
⎥⎥⎥⎦

Use the function inv(A)in numpy.linalg to determine the inverse of A.

2.4 Symmetric and Banded Coefficient Matrices

Introduction

Engineering problems often lead to coefficient matrices that are sparsely populated,
meaning that most elements of the matrix are zero. If all the nonzero terms are clus-
tered about the leading diagonal, then the matrix is said to be banded. An example of
a banded matrix is

A =

⎡
⎢⎢⎢⎢⎢⎣

X X 0 0 0
X X X 0 0
0 X X X 0
0 0 X X X
0 0 0 X X

⎤
⎥⎥⎥⎥⎥⎦

where X’s denote the nonzero elements that form the populated band (some of these
elements may be zero). All the elements lying outside the band are zero. The matrix
shown above has a bandwidth of 3, because there are at most three nonzero elements
in each row (or column). Such a matrix is called tridiagonal.

If a banded matrix is decomposed in the form A = LU, both L and U will retain
the banded structure of A. For example, if we decomposed the matrix just shown, we
would get

L =

⎡
⎢⎢⎢⎢⎢⎣

X 0 0 0 0
X X 0 0 0
0 X X 0 0
0 0 X X 0
0 0 0 X X

⎤
⎥⎥⎥⎥⎥⎦ U =

⎡
⎢⎢⎢⎢⎢⎣

X X 0 0 0
0 X X 0 0
0 0 X X 0
0 0 0 X X
0 0 0 0 X

⎤
⎥⎥⎥⎥⎥⎦

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.004

Cambridge Books Online © Cambridge University Press, 2016

55 2.4 Symmetric and Banded Coefficient Matrices

The banded structure of a coefficient matrix can be exploited to save storage and
computation time. If the coefficient matrix is also symmetric, further economies are
possible. In this section we show how the methods of solution discussed previously
can be adapted for banded and symmetric coefficient matrices.

Tridiagonal Coefficient Matrix

Consider the solution of Ax = b by Doolittle’s decomposition, where A is the n × n
tridiagonal matrix

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1 e1 0 0 · · · 0
c1 d2 e2 0 · · · 0
0 c2 d3 e3 · · · 0
0 0 c3 d4 · · · 0
...

...
...

...
. . .

...
0 0 . . . 0 cn−1 dn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

As the notation implies, we are storing the nonzero elements of A in the vectors

c =

⎡
⎢⎢⎢⎢⎣

c1

c2

...
cn−1

⎤
⎥⎥⎥⎥⎦ d =

⎡
⎢⎢⎢⎢⎢⎢⎣

d1

d2

...
dn−1

dn

⎤
⎥⎥⎥⎥⎥⎥⎦

e =

⎡
⎢⎢⎢⎢⎣

e1

e2

...
en−1

⎤
⎥⎥⎥⎥⎦

The resulting saving of storage can be significant. For example, a 100 × 100 tridiag-
onal matrix, containing 10,000 elements, can be stored in only 99 + 100 + 99 = 298
locations, which represents a compression ratio of about 33:1.

Let us now apply LU decomposition to the coefficient matrix. We reduce row k
by getting rid of ck−1 with the elementary operation

row k ← row k − (ck−1/dk−1) × row (k − 1), k = 2, 3, . . . , n

The corresponding change in dk is

dk ← dk − (ck−1/dk−1)ek−1 (2.21)

whereas ek is not affected. In order to finish up with Doolittle’s decomposition of the
form [L\U], we store the multiplier λ = ck−1/dk−1 in the location previously occupied
by ck−1:

ck−1 ← ck−1/dk−1 (2.22)

Thus, the decomposition algorithm is

for k in range(1,n):

lam = c[k-1]/d[k-1]

d[k] = d[k] - lam*e[k-1]

c[k-1] = lam

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.004

Cambridge Books Online © Cambridge University Press, 2016

56 Systems of Linear Algebraic Equations

Next we look at the solution phase, that is, the solution of Ly = b, followed by
Ux = y. The equations Ly = b can be portrayed by the augmented coefficient matrix

[
L b

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 · · · 0 b1

c1 1 0 0 · · · 0 b2

0 c2 1 0 · · · 0 b3

0 0 c3 1 . . . 0 b4

...
...

...
... · · · ...

...
0 0 · · · 0 cn−1 1 bn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Note that the original contents of c were destroyed and replaced by the multipliers
during the decomposition. The solution algorithm for y by forward substitution is

y[0] = b[0]

for k in range(1,n):

y[k] = b[k] - c[k-1]*y[k-1]

The augmented coefficient matrix representing Ux = y is

[
U y

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1 e1 0 · · · 0 0 y1

0 d2 e2 · · · 0 0 y2

0 0 d3 · · · 0 0 y3

...
...

...
...

...
...

0 0 0 · · · dn−1 en−1 yn−1

0 0 0 · · · 0 dn yn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Note again that the contents of d were altered from the original values during the
decomposition phase (but e was unchanged). The solution for x is obtained by back
substitution using the algorithm

x[n-1] = y[n-1]/d[n-1]

for k in range(n-2,-1,-1):

x[k] = (y[k] - e[k]*x[k+1])/d[k]

end do

� LUdecomp3

This module contains the functions LUdecomp3 and LUsolve3 for the decomposi-
tion and solution phases of a tridiagonal matrix. In LUsolve3, the vector y writes
over the constant vector b during forward substitution. Similarly, the solution vector
x overwrites y in the back substitution process. In other words, b contains the solu-
tion upon exit from LUsolve3.

module LUdecomp3

’’’ c,d,e = LUdecomp3(c,d,e).

LU decomposition of tridiagonal matrix [c\d\e]. On output

{c},{d} and {e} are the diagonals of the decomposed matrix.

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.004

Cambridge Books Online © Cambridge University Press, 2016

57 2.4 Symmetric and Banded Coefficient Matrices

x = LUsolve(c,d,e,b).

Solves [c\d\e]{x} = {b}, where {c}, {d} and {e} are the

vectors returned from LUdecomp3.

’’’

def LUdecomp3(c,d,e):

n = len(d)

for k in range(1,n):

lam = c[k-1]/d[k-1]

d[k] = d[k] - lam*e[k-1]

c[k-1] = lam

return c,d,e

def LUsolve3(c,d,e,b):

n = len(d)

for k in range(1,n):

b[k] = b[k] - c[k-1]*b[k-1]

b[n-1] = b[n-1]/d[n-1]

for k in range(n-2,-1,-1):

b[k] = (b[k] - e[k]*b[k+1])/d[k]

return b

Symmetric Coefficient Matrices

More often than not, coefficient matrices that arise in engineering problems are sym-
metric as well as banded. Therefore, it is worthwhile to discover special properties of
such matrices and learn how to utilize them in the construction of efficient algo-
rithms.

If the matrix A is symmetric, then the LU decomposition can be presented in the
form

A = LU = LDLT (2.23)

where D is a diagonal matrix. An example is Choleski’s decomposition A = LLT that
was discussed in the previous section (in this case, D = I). For Doolittle’s decomposi-
tion we have

U = DLT =

⎡
⎢⎢⎢⎢⎢⎢⎣

D1 0 0 · · · 0
0 D2 0 · · · 0
0 0 D3 · · · 0
...

...
... · · · ...

0 0 0 · · · Dn

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

1 L21 L31 · · · Ln1

0 1 L32 · · · Ln2

0 0 1 · · · Ln3

...
...

... · · · ...
0 0 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎦

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.004

Cambridge Books Online © Cambridge University Press, 2016

58 Systems of Linear Algebraic Equations

which gives

U =

⎡
⎢⎢⎢⎢⎢⎢⎣

D1 D1 L21 D1 L31 · · · D1 Ln1

0 D2 D2 L32 · · · D2 Ln2

0 0 D3 · · · D3 L3n

...
...

... · · · ...
0 0 0 · · · Dn

⎤
⎥⎥⎥⎥⎥⎥⎦

(2.24)

We now see that during decomposition of a symmetric matrix only U has to be stored,
because D and L can be easily recovered from U. Thus Gauss elimination, which re-
sults in an upper triangular matrix of the form shown in Eq. (2.24), is sufficient to
decompose a symmetric matrix.

There is an alternative storage scheme that can be employed during LU decom-
position. The idea is to arrive at the matrix

U∗ =

⎡
⎢⎢⎢⎢⎢⎢⎣

D1 L21 L31 · · · Ln1

0 D2 L32 · · · Ln2

0 0 D3 · · · Ln3

...
...

...
. . .

...
0 0 0 · · · Dn

⎤
⎥⎥⎥⎥⎥⎥⎦

(2.25)

Here U can be recovered from Uij = Di L ji . It turns out that this scheme leads to a
computationally more efficient solution phase; therefore, we adopt it for symmetric,
banded matrices.

Symmetric, Pentadiagonal Coefficient Matrix

We encounter pentadiagonal (bandwidth = 5) coefficient matrices in the solution of
fourth-order, ordinary differential equations by finite differences. Often these matri-
ces are symmetric, in which case an n × n coefficient matrix has the form

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1 e1 f1 0 0 0 · · · 0
e1 d2 e2 f2 0 0 · · · 0
f1 e2 d3 e3 f3 0 · · · 0
0 f2 e3 d4 e4 f4 · · · 0
...

...
...

...
...

...
. . .

...
0 · · · 0 fn−4 en−3 dn−2 en−2 fn−2

0 · · · 0 0 fn−3 en−2 dn−1 en−1

0 · · · 0 0 0 fn−2 en−1 dn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.26)

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.004

Cambridge Books Online © Cambridge University Press, 2016

59 2.4 Symmetric and Banded Coefficient Matrices

As in the case of tridiagonal matrices, we store the nonzero elements in the three
vectors

d =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1

d2

...
dn−2

dn−1

dn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

e =

⎡
⎢⎢⎢⎢⎢⎢⎣

e1

e2

...
en−2

en−1

⎤
⎥⎥⎥⎥⎥⎥⎦

f =

⎡
⎢⎢⎢⎢⎣

f1

f2

...
fn−2

⎤
⎥⎥⎥⎥⎦

Let us now look at the solution of the equations Ax = b by Doolittle’s decomposi-
tion. The first step is to transform A to upper triangular form by Gauss elimination. If
elimination has progressed to the stage where the kth row has become the pivot row,
we have the following situation:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .
...

...
...

...
...

...
...

· · · 0 dk ek fk 0 0 0 · · ·
· · · 0 ek dk+1 ek+1 fk+1 0 0 · · ·
· · · 0 fk ek+1 dk+2 ek+2 fk+2 0 · · ·
· · · 0 0 fk+1 ek+2 dk+3 ek+3 fk+3 · · ·

...
...

...
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

←

The elements ek and fk below the pivot row (the kth row) are eliminated by the oper-
ations

row (k + 1) ← row (k + 1) − (ek/dk) × row k

row (k + 2) ← row (k + 2) − (fk/dk) × row k

The only terms (other than those being eliminated) that are changed by the foregoing
operations are

dk+1 ← dk+1 − (ek/dk)ek

ek+1 ← ek+1 − (ek/dk)fk (2.27a)

dk+2 ← dk+2 − (fk/dk)fk

Storage of the multipliers in the upper triangular portion of the matrix results in

ek ← ek/dk fk ← fk/dk (2.27b)

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.004

Cambridge Books Online © Cambridge University Press, 2016

60 Systems of Linear Algebraic Equations

At the conclusion of the elimination phase, the matrix has the form (do not confuse
d, e, and f with the original contents of A)

U∗ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1 e1 f1 0 · · · 0
0 d2 e2 f2 · · · 0
0 0 d3 e3 · · · 0
...

...
...

... · · · ...
0 0 · · · 0 dn−1 en−1

0 0 · · · 0 0 dn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Now comes the solution phase. The equations Ly = b have the augmented coef-
ficient matrix

[
L b

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 · · · 0 b1

e1 1 0 0 · · · 0 b2

f1 e2 1 0 · · · 0 b3

0 f2 e3 1 · · · 0 b4

...
...

...
... · · · ...

...
0 0 0 fn−2 en−1 1 bn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Solution by forward substitution yields

y1 = b1

y2 = b2 − e1y1 (2.28)

...

yk = bk − fk−2yk−2 − ek−1yk−1, k = 3, 4, . . . , n

The equations to be solved by back substitution, namely, Ux = y, have the aug-
mented coefficient matrix

[
U y

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1 d1e1 d1 f1 0 · · · 0 y1

0 d2 d2e2 d2 f2 · · · 0 y2

0 0 d3 d3e3 · · · 0 y3

...
...

...
... · · · ...

...
0 0 · · · 0 dn−1 dn−1en−1 yn−1

0 0 · · · 0 0 dn yn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

the solution of which is obtained by back substitution:

xn = yn/dn

xn−1 = yn−1/dn−1 − en−1xn
...

xk = yk/dk − ek xk+1 − fk xk+2, k = n − 2, n − 3, . . . , 1

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.004

Cambridge Books Online © Cambridge University Press, 2016

61 2.4 Symmetric and Banded Coefficient Matrices

� LUdecomp5

The function LUdecomp5 decomposes a symmetric, pentadiagonal matrix A of the
form A = [f\e\d\e\f]. The original vectors d, e, and f are destroyed and replaced by
the vectors of the decomposed matrix. After decomposition, the solution of Ax = b
can be obtained by LUsolve5. During forward substitution, the original b is replaced
by y. Similarly, y is written over by x in the back substitution phase, so that b contains
the solution vector upon exit from LUsolve5.

module LUdecomp5

’’’ d,e,f = LUdecomp5(d,e,f).

LU decomposition of symmetric pentadiagonal matrix

[f\e\d\e\f]. On output {d},{e} and {f} are the

diagonals of the decomposed matrix.

x = LUsolve5(d,e,f,b).

Solves [f\e\d\e\f]{x} = {b}, where {d}, {e} and {f}

are the vectors returned from LUdecomp5.

’’’

def LUdecomp5(d,e,f):

n = len(d)

for k in range(n-2):

lam = e[k]/d[k]

d[k+1] = d[k+1] - lam*e[k]

e[k+1] = e[k+1] - lam*f[k]

e[k] = lam

lam = f[k]/d[k]

d[k+2] = d[k+2] - lam*f[k]

f[k] = lam

lam = e[n-2]/d[n-2]

d[n-1] = d[n-1] - lam*e[n-2]

e[n-2] = lam

return d,e,f

def LUsolve5(d,e,f,b):

n = len(d)

b[1] = b[1] - e[0]*b[0]

for k in range(2,n):

b[k] = b[k] - e[k-1]*b[k-1] - f[k-2]*b[k-2]

b[n-1] = b[n-1]/d[n-1]

b[n-2] = b[n-2]/d[n-2] - e[n-2]*b[n-1]

for k in range(n-3,-1,-1):

b[k] = b[k]/d[k] - e[k]*b[k+1] - f[k]*b[k+2]

return b

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.004

Cambridge Books Online © Cambridge University Press, 2016

62 Systems of Linear Algebraic Equations

EXAMPLE 2.9
As a result of Gauss elimination, a symmetric matrix A was transformed to the upper
triangular form

U =

⎡
⎢⎢⎢⎣

4 −2 1 0
0 3 −3/2 1
0 0 3 −3/2
0 0 0 35/12

⎤
⎥⎥⎥⎦

Determine the original matrix A.

Solution First, we find L in the decomposition A = LU. Dividing each row of U by its
diagonal element yields

LT =

⎡
⎢⎢⎢⎣

1 −1/2 1/4 0
0 1 −1/2 1/3
0 0 1 −1/2
0 0 0 1

⎤
⎥⎥⎥⎦

Therefore, A = LU, or

A =

⎡
⎢⎢⎢⎣

1 0 0 0
−1/2 1 0 0

1/4 −1/2 1 0
0 1/3 −1/2 1

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

4 −2 1 0
0 3 −3/2 1
0 0 3 −3/2
0 0 0 35/12

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

4 −2 1 0
−2 4 −2 1

1 −2 4 −2
0 1 −2 4

⎤
⎥⎥⎥⎦

EXAMPLE 2.10
Determine L and D that result from Doolittle’s decomposition A = LDLT of the sym-
metric matrix

A =

⎡
⎢⎣ 3 −3 3

−3 5 1
3 1 10

⎤
⎥⎦

Solution We use Gauss elimination, storing the multipliers in the upper triangular
portion of A. At the completion of elimination, the matrix will have the form of U∗ in
Eq. (2.25).

The terms to be eliminated in the first pass are A 21 and A 31 using the elementary
operations

row 2 ← row 2 − (−1) × row 1

row 3 ← row 3 − (1) × row 1

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.004

Cambridge Books Online © Cambridge University Press, 2016

63 2.4 Symmetric and Banded Coefficient Matrices

Storing the multipliers (−1 and 1) in the locations occupied by A 12 and A 13, we get

A′ =

⎡
⎢⎣3 −1 1

0 2 4
0 4 7

⎤
⎥⎦

The second pass is the operation

row 3 ← row 3 − 2 × row 2

which yields, after overwriting A 23 with the multiplier 2,

A′′ = [0\D\LT] =

⎡
⎢⎣3 −1 1

0 2 2
0 0 −1

⎤
⎥⎦

Hence,

L =

⎡
⎢⎣ 1 0 0

−1 1 0
1 2 1

⎤
⎥⎦ D =

⎡
⎢⎣3 0 0

0 2 0
0 0 −1

⎤
⎥⎦

EXAMPLE 2.11
Utilize the functions LUdecmp3 and LUsolve3 to solve Ax = b, where

A =

⎡
⎢⎢⎢⎢⎢⎣

2 −1 0 0 0
−1 2 −1 0 0

0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 2

⎤
⎥⎥⎥⎥⎥⎦ b =

⎡
⎢⎢⎢⎢⎢⎣

5
−5

4
−5

5

⎤
⎥⎥⎥⎥⎥⎦

Solution

#!/usr/bin/python

example2_11

from numpy import array,ones

from LUdecomp3 import *

d = ones((5))*2.0

c = ones((4))*(-1.0)

b = array([5.0, -5.0, 4.0, -5.0, 5.0])

e = c.copy()

c,d,e = LUdecomp3(c,d,e)

x = LUsolve3(c,d,e,b)

print ’’\nx =\n’’,x

raw_input(’’\nPress return to exit’’)

The output is:

x =

[2. -1. 1. -1. 2.]

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.004

Cambridge Books Online © Cambridge University Press, 2016

64 Systems of Linear Algebraic Equations

2.5 Pivoting

Introduction

Sometimes the order in which the equations are presented to the solution algorithm
has a profound effect on the results. For example, consider the equations

2x1 − x2 = 1

−x1 + 2x2 − x3 = 0

−x2 + x3 = 0

The corresponding augmented coefficient matrix is

[
A b

]
=

⎡
⎢⎣ 2 −1 0 1

−1 2 −1 0
0 −1 1 0

⎤
⎥⎦ (a)

Equations (a) are in the “right order” in the sense that we would have no trouble
obtaining the correct solution x1 = x2 = x3 = 1 by Gauss elimination or LU decom-
position. Now suppose that we exchange the first and third equations, so that the
augmented coefficient matrix becomes

[
A b

]
=

⎡
⎢⎣ 0 −1 1 0

−1 2 −1 0
2 −1 0 1

⎤
⎥⎦ (b)

Because we did not change the equations (only their order was altered), the solution
is still x1 = x2 = x3 = 1. However, Gauss elimination fails immediately as a result of
the presence of the zero pivot element (the element A 11).

The foregoing example demonstrates that it is sometimes essential to reorder the
equations during the elimination phase. The reordering, or row pivoting, is also re-
quired if the pivot element is not zero, but very small in comparison to other elements
in the pivot row, as demonstrated by the following set of equations:

[
A b

]
=

⎡
⎢⎣ ε −1 1 0

−1 2 −1 0
2 −1 0 1

⎤
⎥⎦ (c)

These equations are the same as Eqs. (b), except that the small number ε replaces the
zero element in Eq. (b). Therefore, if we let ε → 0, the solutions of Eqs. (b) and (c)
should become identical. After the first phase of Gauss elimination, the augmented
coefficient matrix becomes

[
A′ b′

]
=

⎡
⎢⎣ε −1 1 0

0 2 − 1/ε −1 + 1/ε 0
0 −1 + 2/ε −2/ε 1

⎤
⎥⎦ (d)

Because the computer works with a fixed word length, all numbers are rounded off
to a finite number of significant figures. If ε is very small, then 1/ε is huge, and an

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.004

Cambridge Books Online © Cambridge University Press, 2016

65 2.5 Pivoting

element such as 2 − 1/ε is rounded to −1/ε. Therefore, for sufficiently small ε, Eqs.
(d) are actually stored as

[
A′ b′

]
=

⎡
⎢⎣ε −1 1 0

0 −1/ε 1/ε 0
0 2/ε −2/ε 1

⎤
⎥⎦

Because the second and third equations obviously contradict each other, the solution
process fails again. This problem would not arise if the first and second, or the first
and third, equations were interchanged in Eqs. (c) before the elimination.

The last example illustrates the extreme case where ε was so small that roundoff
errors resulted in total failure of the solution. If we were to make ε somewhat bigger
so that the solution would not “bomb” any more, the roundoff errors might still be
large enough to render the solution unreliable. Again, this difficulty could be avoided
by pivoting.

Diagonal Dominance

An n × n matrix A is said to be diagonally dominant if each diagonal element is larger
than the sum of the other elements in the same row (we are talking here about abso-
lute values). Thus, diagonal dominance requires that

|Aii | >

n∑
j=1
j �=i

∣∣Aij

∣∣ (i = 1, 2, ..., n) (2.30)

For example, the matrix ⎡
⎢⎣−2 4 −1

1 −1 3
4 −2 1

⎤
⎥⎦

is not diagonally dominant, but if we rearrange the rows in the following manner:⎡
⎢⎣ 4 −2 1

−2 4 −1
1 −1 3

⎤
⎥⎦

then we have diagonal dominance.
It can be shown that if the coefficient matrix of the equations Ax = b is diagonally

dominant, then the solution does not benefit from pivoting, that is, the equations are
already arranged in the optimal order. It follows that the strategy of pivoting should
be to reorder the equations so that the coefficient matrix is as close to diagonal dom-
inance as possible. This is the principle behind scaled row pivoting, discussed next.

Gauss Elimination with Scaled Row Pivoting

Consider the solution of Ax = b by Gauss elimination with row pivoting. Recall that
pivoting aims at improving diagonal dominance of the coefficient matrix, that is,

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.004

Cambridge Books Online © Cambridge University Press, 2016

66 Systems of Linear Algebraic Equations

making the pivot element as large as possible in comparison to other elements in the
pivot row. The comparison is made easier if we establish an array s with the elements

si = max
j

∣∣Aij

∣∣ , i = 1, 2, ..., n (2.31)

Thus, si , called the scale factor of row i, contains the absolute value of the largest
element in the ith row of A. The vector s can be obtained with the algorithm

for i in range(n):

s[i] = max(abs(a[i,:]))

The relative size of an element Aij (that is, relative to the largest element in the
ith row) is defined as the ratio

rij =
∣∣Aij

∣∣
si

(2.32)

Suppose that the elimination phase has reached the stage where the kth row has
become the pivot row. The augmented coefficient matrix at this point is⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A 11 A 12 A 13 A 14 · · · A 1n b1

0 A 22 A 23 A 24 · · · A 2n b2

0 0 A 33 A 34 · · · A 3n b3

...
...

...
... · · · ...

...

0 · · · 0 A kk · · · A kn bk

... · · · ...
... · · · ...

...
0 · · · 0 Ank · · · Ann bn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

←

We don’t automatically accept A kk as the next pivot element, but look in the kth col-
umn below A kk for a “better” pivot. The best choice is the element A pk that has the
largest relative size, that is, we choose p such that

r pk = max
j

(
r j k
)

, j ≥ k

If we find such an element, then we interchange the rows k and p and proceed with
the elimination pass as usual. Note that the corresponding row interchange must also
be carried out in the scale factor array s. The algorithm that does all this is

for k in range(0,n-1):

Find row containing element with largest relative size

p = argmax(abs(a[k:n,k])/s[k:n]) + k

If this element is very small, matrix is singular

if abs(a[p,k]) < tol: error.err(’Matrix is singular’)

Check whether rows k and p must be interchanged

if p != k:

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.004

Cambridge Books Online © Cambridge University Press, 2016

67 2.5 Pivoting

Interchange rows if needed

swap.swapRows(b,k,p)

swap.swapRows(s,k,p)

swap.swapRows(a,k,p)

Proceed with elimination

The Python statement argmax(v) returns the index of the largest element in the
vector v. The algorithms for exchanging rows (and columns) are included in the mod-
ule swap shown next.

� swap

The function swapRows interchanges rows i and j of a matrix or vector v, whereas
swapCols interchanges columns i and j of a matrix.

module swap

’’’ swapRows(v,i,j).

Swaps rows i and j of vector or matrix [v].

swapCols(v,i,j).

Swaps columns i and j of matrix [v].

’’’

def swapRows(v,i,j):

if len(v.getshape()) == 1:

v[i],v[j] = v[j],v[i]

else:

temp = v[i].copy()

v[i] = v[j]

v[j] = temp

def swapCols(v,i,j):

temp = v[:,j].copy()

v[:,j] = v[:,i]

v[:,i] = temp

� gaussPivot

The function gaussPivot performs Gauss elimination with row pivoting. Apart from
row swapping, the elimination and solution phases are identical to gaussElimin in
Section 2.2.

module gaussPivot

’’’ x = gaussPivot(a,b,tol=1.0e-9).

Solves [a]{x} = {b} by Gauss elimination with

scaled row pivoting

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.004

Cambridge Books Online © Cambridge University Press, 2016

68 Systems of Linear Algebraic Equations

’’’

from numpy import zeros,argmax.dot

import swap

import error

def gaussPivot(a,b,tol=1.0e-9):

n = len(b)

Set up scale factors

s = zeros(n)

for i in range(n):

s[i] = max(abs(a[i,:]))

for k in range(0,n-1):

Row interchange, if needed

p = argmax(abs(a[k:n,k])/s[k:n]) + k

if abs(a[p,k]) < tol:

error.err(’Matrix is singular’)

if p != k:

swap.swapRows(b,k,p)

swap.swapRows(s,k,p)

swap.swapRows(a,k,p)

Elimination

for i in range(k+1,n):

if a[i,k] != 0.0:

lam = a[i,k]/a[k,k]

a[i,k+1:n] = a [i,k+1:n] - lam*a[k,k+1:n]

b[i] = b[i] - lam*b[k]

if abs(a[n-1,n-1]) < tol:

error.err(’Matrix is singular’)

Back substitution

for k in range(n-1,-1,-1):

b[k] = (b[k] - dot(a[k,k+1:n],b[k+1:n]))/a[k,k]

return b

� LUpivot

The Gauss elimination algorithm can be changed to Doolittle’s decomposition with
minor changes. The most important of these is keeping a record of the row inter-
changes during the decomposition phase. In LUdecomp this record is kept in the
array seq. Initially, seq contains [0, 1, 2, . . .]. Whenever two rows are interchanged,

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.004

Cambridge Books Online © Cambridge University Press, 2016

69 2.5 Pivoting

the corresponding interchange is also carried out in seq. Thus seq shows the order
in which of the original rows have been rearranged. This information is passed on to
the solution phase (LUsolve), which rearranges the elements of the constant vector
in the same order before proceeding to forward and back substitutions.

module LUpivot

’’’ a,seq = LUdecomp(a,tol=1.0e-9).

LU decomposition of matrix [a] using scaled row pivoting.

The returned matrix [a] = [L\U] contains [U] in the upper

triangle and the nondiagonal terms of [L] in the lower triangle.

Note that [L][U] is a row-wise permutation of the original [a];

the permutations are recorded in the vector {seq}.

x = LUsolve(a,b,seq).

Solves [L][U]{x} = {b}, where the matrix [a] = [L\U] and the

permutation vector {seq} are returned from LUdecomp.

’’’

from numpy import argmax,abs,dot,zeros,float,array

import swap

import error

def LUdecomp(a,tol=1.0e-9):

n = len(a)

seq = array(range(n))

Set up scale factors

s = zeros((n),dtype=float)

for i in range(n):

s[i] = max(abs(a[i,:]))

for k in range(0,n-1):

Row interchange, if needed

p = int(argmax(abs(a[k:n,k])/s[k:n])) + k

if abs(a[p,k]) < tol:

error.err(’Matrix is singular’)

if p != k:

swap.swapRows(s,k,p)

swap.swapRows(a,k,p)

swap.swapRows(seq,k,p)

Elimination

for i in range(k+1,n):

if a[i,k] != 0.0:

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.004

Cambridge Books Online © Cambridge University Press, 2016

70 Systems of Linear Algebraic Equations

lam = a[i,k]/a[k,k]

a[i,k+1:n] = a[i,k+1:n] - lam*a[k,k+1:n]

a[i,k] = lam

return a,seq

def LUsolve(a,b,seq):

n = len(a)

Rearrange constant vector; store it in [x]

x = b.copy()

for i in range(n):

x[i] = b[seq[i]]

Solution

for k in range(1,n):

x[k] = x[k] - dot(a[k,0:k],x[0:k])

for k in range(n-1,-1,-1):

x[k] = (x[k] - dot(a[k,k+1:n],x[k+1:n]))/a[k,k]

return x

When to Pivot

Pivoting has a couple of drawbacks. One of these is the increased cost of computa-
tion; the other is the destruction of symmetry and banded structure of the coefficient
matrix. The latter is of particular concern in engineering computing, where the co-
efficient matrices are frequently banded and symmetric, a property that is utilized
in the solution, as seen in the previous article. Fortunately, these matrices are often
diagonally dominant as well, so that they would not benefit from pivoting anyway.

There are no infallible rules for determining when pivoting should be used. Ex-
perience indicates that pivoting is likely to be counterproductive if the coefficient
matrix is banded. Positive definite and, to a lesser degree, symmetric matrices also
seldom gain from pivoting. And we should not forget that pivoting is not the only
means of controlling roundoff errors – there is also double-precision arithmetic.

It should be strongly emphasized that the preceding rules of the thumb are only
meant for equations that stem from real engineering problems. It is not difficult to
concoct “textbook” examples that do not conform to these rules.

EXAMPLE 2.12
Employ Gauss elimination with scaled row pivoting to solve the equations Ax = b,
where

A =

⎡
⎢⎣ 2 −2 6

−2 4 3
−1 8 4

⎤
⎥⎦ b =

⎡
⎢⎣ 16

0
−1

⎤
⎥⎦

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.004

Cambridge Books Online © Cambridge University Press, 2016

71 2.5 Pivoting

Solution The augmented coefficient matrix and the scale factor array are

[
A b

]
=

⎡
⎢⎣ 2 −2 6 16

−2 4 3 0
−1 8 4 −1

⎤
⎥⎦ s =

⎡
⎢⎣6

4
8

⎤
⎥⎦

Note that s contains the absolute value of the biggest element in each row of A. At this
stage, all the elements in the first column of A are potential pivots. To determine the
best pivot element, we calculate the relative sizes of the elements in the first column:⎡

⎢⎣r11

r21

r31

⎤
⎥⎦ =

⎡
⎢⎣ |A 11| /s1

|A 21| /s2

|A 31| /s3

⎤
⎥⎦ =

⎡
⎢⎣1/3

1/2
1/8

⎤
⎥⎦

Because r21 is the biggest element, we conclude that A 21 makes the best pivot ele-
ment. Therefore, we exchange rows 1 and 2 of the augmented coefficient matrix and
the scale factor array, obtaining

[
A b

]
=

⎡
⎢⎣−2 4 3 0

2 −2 6 16
−1 8 4 −1

⎤
⎥⎦ ←

s =

⎡
⎢⎣4

6
8

⎤
⎥⎦

Now the first pass of Gauss elimination is carried out (the arrow points to the pivot
row), yielding

[
A′ b′

]
=

⎡
⎢⎣−2 4 3 0

0 2 9 16
0 6 5/2 −1

⎤
⎥⎦ s =

⎡
⎢⎣4

6
8

⎤
⎥⎦

The potential pivot elements for the next elimination pass are A ′
22 and A ′

32. We
determine the “winner” from⎡

⎢⎣ ∗
r22

r32

⎤
⎥⎦ =

⎡
⎢⎣ ∗

|A 22| /s2

|A 32| /s3

⎤
⎥⎦ =

⎡
⎢⎣ ∗

1/3
3/4

⎤
⎥⎦

Note that r12 is irrelevant, since row 1 already acted as the pivot row. Therefore, it
is excluded from further consideration. As r32 is bigger than r22, the third row is the
better pivot row. After interchanging rows 2 and 3, we have

[
A′ b′

]
=

⎡
⎢⎣−2 4 3 0

0 6 5/2 −1
0 2 9 16

⎤
⎥⎦ ← s =

⎡
⎢⎣4

8
6

⎤
⎥⎦

The second elimination pass now yields

[
A′′ b′′

]
=
[

U c
]

=

⎡
⎢⎣−2 4 3 0

0 6 5/2 −1
0 0 49/6 49/3

⎤
⎥⎦

This completes the elimination phase. It should be noted that U is the matrix that
would result from LU decomposition of the following row-wise permutation of A (the

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.004

Cambridge Books Online © Cambridge University Press, 2016

72 Systems of Linear Algebraic Equations

ordering of rows is the same as achieved by pivoting):⎡
⎢⎣−2 4 3

−1 8 4
2 −2 6

⎤
⎥⎦

Because the solution of Ux = c by back substitution is not affected by pivoting, we
skip the details computation. The result is xT =

[
1 −1 2

]
.

Alternate Solution
It is not necessary to physically exchange equations during pivoting. We could ac-
complish Gauss elimination just as well by keeping the equations in place. The elim-
ination would then proceed as follows (for the sake of brevity, we skip repeating the
details of choosing the pivot equation):

[
A b

]
=

⎡
⎢⎣ 2 −2 6 16

−2 4 3 0
−1 8 4 −1

⎤
⎥⎦ ←

[
A′ b′

]
=

⎡
⎢⎣ 0 2 9 16

−2 4 3 0
0 6 5/2 −1

⎤
⎥⎦

←

[
A′′ b′′

]
=

⎡
⎢⎣ 0 0 49/6 49/3

−2 4 3 0
0 6 5/2 −1

⎤
⎥⎦

But now the back substitution phase is a little more involved, because the order in
which the equations must be solved has become scrambled. In hand computations
this is not a problem, because we can determine the order by inspection. Unfortu-
nately, “by inspection” does not work on a computer. To overcome this difficulty, we
have to maintain an integer array p that keeps track of the row permutations during
the elimination phase. The contents of p indicate the order in which the pivot rows
were chosen. In this example, we would have at the end of Gauss elimination

p =

⎡
⎢⎣2

3
1

⎤
⎥⎦

showing that row 2 was the pivot row in the first elimination pass, followed by row 3 in
the second pass. The equations are solved by back substitution in the reverse order:
equation 1 is solved first for x3, then equation 3 is solved for x2, and finally equation
2 yields x1.

By dispensing with swapping of equations, the scheme just outlined would prob-
ably result in a faster (and more complex) algorithm than gaussPivot, but the
number of equations would have to be quite large before the difference becomes
noticeable.

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.004

Cambridge Books Online © Cambridge University Press, 2016

73 2.5 Pivoting

PROBLEM SET 2.2

1. Solve the equations Ax = b by utilizing Doolittle’s decomposition, where

A =

⎡
⎢⎣ 3 −3 3

−3 5 1
3 1 5

⎤
⎥⎦ b =

⎡
⎢⎣ 9

−7
12

⎤
⎥⎦

2. Use Doolittle’s decomposition to solve Ax = b, where

A =

⎡
⎢⎣ 4 8 20

8 13 16
20 16 −91

⎤
⎥⎦ b =

⎡
⎢⎣ 24

18
−119

⎤
⎥⎦

3. Determine L and D that result from Doolittle’s decomposition of the symmetric
matrix

A =

⎡
⎢⎢⎢⎢⎢⎣

2 −2 0 0 0
−2 5 −6 0 0

0 −6 16 12 0
0 0 12 39 −6
0 0 0 −6 14

⎤
⎥⎥⎥⎥⎥⎦

4. Solve the tridiagonal equations Ax = b by Doolittle’s decomposition method,
where

A =

⎡
⎢⎢⎢⎢⎢⎣

6 2 0 0 0
−1 7 2 0 0

0 −2 8 2 0
0 0 3 7 −2
0 0 0 3 5

⎤
⎥⎥⎥⎥⎥⎦ b =

⎡
⎢⎢⎢⎢⎢⎣

2
−3

4
−3

1

⎤
⎥⎥⎥⎥⎥⎦

5. Use Gauss elimination with scaled row pivoting to solve⎡
⎢⎣ 4 −2 1

−2 1 −1
−2 3 6

⎤
⎥⎦
⎡
⎢⎣ x1

x2

x3

⎤
⎥⎦ =

⎡
⎢⎣ 2

−1
0

⎤
⎥⎦

6. Solve Ax = b by Gauss elimination with scaled row pivoting, where

A =

⎡
⎢⎣2.34 −4.10 1.78

1.98 3.47 −2.22
2.36 −15.17 6.81

⎤
⎥⎦ b =

⎡
⎢⎣ 0.02

−0.73
−6.63

⎤
⎥⎦

7. Solve the equations ⎡
⎢⎢⎢⎣

2 −1 0 0
0 0 −1 1
0 −1 2 −1

−1 2 −1 0

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎥⎦

by Gauss elimination with scaled row pivoting.

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.004

Cambridge Books Online © Cambridge University Press, 2016

74 Systems of Linear Algebraic Equations

8. � Solve the equations⎡
⎢⎢⎢⎣

0 2 5 −1
2 1 3 0

−2 −1 3 1
3 3 −1 2

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

−3
3

−2
5

⎤
⎥⎥⎥⎦

9. � Solve the symmetric, tridiagonal equations

4x1 − x2 = 9

−xi−1 + 4xi − xi+1 = 5, i = 2, . . . , n − 1

−xn−1 + 4xn = 5

with n = 10.
10. � Solve the equations Ax = b, where

A =

⎡
⎢⎢⎢⎣

1.3174 2.7250 2.7250 1.7181
0.4002 0.8278 1.2272 2.5322
0.8218 1.5608 0.3629 2.9210
1.9664 2.0011 0.6532 1.9945

⎤
⎥⎥⎥⎦ b =

⎡
⎢⎢⎢⎣

8.4855
4.9874
5.6665
6.6152

⎤
⎥⎥⎥⎦

11. � Solve the equations⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

10 −2 −1 2 3 1 −4 7
5 11 3 10 −3 3 3 −4
7 12 1 5 3 −12 2 3
8 7 −2 1 3 2 2 4
2 −15 −1 1 4 −1 8 3
4 2 9 1 12 −1 4 1

−1 4 −7 −1 1 1 −1 −3
−1 3 4 1 3 −4 7 6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4

x5

x6

x7

x8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
12
−5

3
−25
−26

9
−7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

12. � The system shown in Fig. (a) consists of n linear springs that support n masses.
The spring stiffnesses are denoted by ki , the weights of the masses are Wi , and
xi are the displacements of the masses (measured from the positions where the
springs are undeformed). The displacement formulation is obtained by writing
the equilibrium equation of each mass and substituting Fi = ki (xi+1 − xi) for the
spring forces. The result is the symmetric, tridiagonal set of equations

(k1 + k2)x1 − k2x2 = W1

−ki xi−1 + (ki + ki+1)xi − ki+1xi+1 = Wi , i = 2, 3, . . . , n − 1

−knxn−1 + knxn = Wn

Write a program that solves these equations for given values of n, k, and W. Run
the program with n = 5 and

k1 = k2 = k3 = 10 N/mm k4 = k5 = 5 N/mm
W1 = W3 = W5 = 100 N W2 = W4 = 50 N

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.004

Cambridge Books Online © Cambridge University Press, 2016

75 2.5 Pivoting

x1

k

x

k

x

k

k

2

nW

2

3

n

1

W

W

n

1

2

W1

k1

x x1x

W2

k2

k3

x2

x
W

k

k

3

4

5

3

(a) (b)

13. � The displacement formulation for the mass-spring system shown in Fig. (b)
results in the following equilibrium equations of the masses:⎡

⎢⎣k1 + k2 + k3 + k5 −k3 −k5

−k3 k3 + k4 −k4

−k5 −k4 k4 + k5

⎤
⎥⎦
⎡
⎢⎣ x1

x2

x3

⎤
⎥⎦ =

⎡
⎢⎣W1

W2

W3

⎤
⎥⎦

where ki are the spring stiffnesses, Wi represent the weights of the masses, and
xi are the displacements of the masses from the undeformed configuration of
the system. Write a program that solves these equations, given k and W. Use the
program to find the displacements if

k1 = k3 = k4 = k k2 = k5 = 2k
W1 = W3 = 2W W2 = W

14. �

45 kN

1.8 m

2.4 m u1

u2

u3 u5

u4

The displacement formulation for a plane truss is similar to that of a mass-spring
system. The differences are: (1) the stiffnesses of the members are ki = (EA/L)i ,

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.004

Cambridge Books Online © Cambridge University Press, 2016

76 Systems of Linear Algebraic Equations

where E is the modulus of elasticity, A represents the cross-sectional area, and L
is the length of the member; and (2) there are two components of displacement
at each joint. For the statically indeterminate truss shown, the displacement for-
mulation yields the symmetric equations Ku = p, where

K =

⎡
⎢⎢⎢⎢⎢⎣

27.58 7.004 −7.004 0 0
7.004 29.57 −5.253 0 −24.32

−7.004 −5.253 29.57 0 0
0 0 0 27.58 −7.004
0 −24.32 0 −7.004 29.57

⎤
⎥⎥⎥⎥⎥⎦ MN/m

p =
[

0 0 0 0 −45
]

T kN

Determine the displacements ui of the joints.
15. �

P P

P

P

P

P

1 2

3

4

5

6

P P2

P3

P4

P5

P6

18 kN 12 kN

45o 45o

1

In the force formulation of a truss, the unknowns are the member forces Pi . For
the statically determinate truss shown, the equilibrium equations of the joints
are

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 −1/
√

2 0 0 0
0 0 1/

√
2 1 0 0

0 −1 0 0 −1/
√

2 0
0 0 0 0 1/

√
2 0

0 0 0 0 1/
√

2 1
0 0 0 −1 −1/

√
2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

P1

P2

P3

P4

P5

P6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
18

0
12

0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

where the units of Pi are kN. (a) Solve the equations as they are with a computer
program. (b) Rearrange the rows and columns so as to obtain a lower triangu-
lar coefficient matrix, and then solve the equations by back substitution using a
calculator.

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.004

Cambridge Books Online © Cambridge University Press, 2016

77 2.5 Pivoting

16. �

θθ θ θ

P

PP

P

1

2
3

4

P1 P1 P1

P2

P2 P2P3 P3

P3

P4

P5P5 Load = 1

The force formulation of the symmetric truss shown results in the joint equilib-
rium equations

⎡
⎢⎢⎢⎢⎢⎣

c 1 0 0 0
0 s 0 0 1
0 0 2s 0 0
0 −c c 1 0
0 s s 0 0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

P1

P2

P3

P4

P5

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

0
0
1
0
0

⎤
⎥⎥⎥⎥⎥⎦

where s = sin θ , c = cos θ , and Pi are the unknown forces. Write a program that
computes the forces, given the angle θ . Run the program with θ = 53◦.

17. �

i1
i2

i3

20

10

R

220 V

0 V

Ω

Ω

Ω
15

Ω
5

Ω5

The electrical network shown can be viewed as consisting of three loops. Apply-
ing Kirchoff’s law (

∑
voltage drops =∑voltage sources) to each loop yields the

following equations for the loop currents i1, i2, and i3:

5i1 + 15(i1 − i3) = 220 V

R(i2 − i3) + 5i2 + 10i2 = 0

20i3 + R(i3 − i2) + 15(i3 − i1) = 0

Compute the three loop currents for R = 5, 10, and 20 �.

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.004

Cambridge Books Online © Cambridge University Press, 2016

78 Systems of Linear Algebraic Equations

18. �

50 30Ω Ω

15
Ω

15
Ω

Ω20

30Ω

10
Ω

5
Ω

10
Ω

25Ω

i

i i

i

2

1

3

4

-120 V +120 V

Determine the loop currents i1 to i4 in the electrical network shown.
19. � Consider the n simultaneous equations Ax = b, where

Aij = (i + j)2 bi =
n−1∑
j=0

Aij , i = 0, 1, . . . , n − 1, j = 0, 1, . . . , n − 1

Clearly, the solution is x =
[

1 1 · · · 1
]T

. Write a program that solves these
equations for any given n (pivoting is recommended). Run the program with n =
2, 3, and 4 and comment on the results.

20. �

3m /s3 2m /s3

4m /s3 2m /s3 4m /s3

2m /s3

c = 15 mg/m3c = 20 mg/m3

c1 c2 c3 c4 c5

4m /s3

8m /s3 6m /s

6m /s3

6m /s3

m /s35

The diagram shows five mixing vessels connected by pipes. Water is pumped
through the pipes at the steady rates shown on the diagram. The incoming wa-
ter contains a chemical, the amount of which is specified by its concentration
c (mg/m3). Applying the principle of conservation of mass

mass of chemical flowing in = mass of chemical flowing out

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.004

Cambridge Books Online © Cambridge University Press, 2016

79 ∗2.6 Matrix Inversion

to each vessel, we obtain the following simultaneous equations for the concen-
trations ci within the vessels:

−8c1 + 4c2 = −80

8c1 − 10c2 + 2c3 = 0

6c2 − 11c3 + 5c4 = 0

3c3 − 7c4 + 4c5 = 0

2c4 − 4c5 = −30

Note that the mass flow rate of the chemical is obtained by multiplying the vol-
ume flow rate of the water by the concentration. Verify the equations and deter-
mine the concentrations.

21. �

m/s34

3m/s3

1 m/s3

3m/s3

1 m/s3

2m/s3

c = 25 mg/m3 1c 2c

3c 4c
c = 50 mg/m3

2m/s3 m/s34

m/s34

Four mixing tanks are connected by pipes. The fluid in the system is pumped
through the pipes at the rates shown in the figure. The fluid entering the system
contains a chemical of concentration c as indicated. Determine the concentra-
tion of the chemical in the four tanks, assuming a steady state.

∗2.6 Matrix Inversion

Computing the inverse of a matrix and solving simultaneous equations are related
tasks. The most economical way to invert an n × n matrix A is to solve the equations

AX = I (2.33)

where I is the n × n identity matrix. The solution X, also of size n × n, will be the
inverse of A. The proof is simple: after we premultiply both sides of Eq. (2.33) by A−1,
we have A−1AX = A−1I, which reduces to X = A−1.

Inversion of large matrices should be avoided whenever possible because of its
high cost. As seen from Eq. (2.33), inversion of A is equivalent to solving Axi= bi with
i = 1, 2, . . . , n, where bi is the ith column of I. Assuming that LU decomposition is

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.004

Cambridge Books Online © Cambridge University Press, 2016

80 Systems of Linear Algebraic Equations

employed in the solution, the solution phase (forward and back substitution) must be
repeated n times, once for each bi . Because the cost of computation is proportional
to n3 for the decomposition phase and n2 for each vector of the solution phase, the
cost of inversion is considerably more expensive than the solution of Ax = b (single
constant vector b).

Matrix inversion has another serious drawback – a banded matrix loses its struc-
ture during inversion. In other words, if A is banded or otherwise sparse, then A−1 is
fully populated. However, the inverse of a triangular matrix remains triangular.

EXAMPLE 2.13
Write a function that inverts a matrix using LU decomposition with pivoting. Test the
function by inverting

A =

⎡
⎢⎣ 0.6 −0.4 1.0

−0.3 0.2 0.5
0.6 −1.0 0.5

⎤
⎥⎦

Solution The function matInv listed here uses the decomposition and solution pro-
cedures in the module LUpivot.

#!/usr/bin/python

example2_13

from numpy import array,identity,dot

from LUpivot import *

def matInv(a):

n = len(a[0])

aInv = identity(n)

a,seq = LUdecomp(a)

for i in range(n):

aInv[:,i] = LUsolve(a,aInv[:,i],seq)

return aInv

a = array([[0.6, -0.4, 1.0],\

[-0.3, 0.2, 0.5],\

[0.6, -1.0, 0.5]])

aOrig = a.copy() # Save original [a]

aInv = matInv(a) # Invert [a] (original [a] is destroyed)

print "\naInv =\n",aInv

print "\nCheck: a*aInv =\n", dot(aOrig,aInv)

raw_input("\nPress return to exit")

The output is

aInv =

[[1.66666667 -2.22222222 -1.11111111]

[1.25 -0.83333333 -1.66666667]

[0.5 1. 0.]]

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.004

Cambridge Books Online © Cambridge University Press, 2016

81 ∗2.6 Matrix Inversion

Check: a*aInv =

[[1.00000000e+00 -4.44089210e-16 -1.11022302e-16]

[0.00000000e+00 1.00000000e+00 5.55111512e-17]

[0.00000000e+00 -3.33066907e-16 1.00000000e+00]]

EXAMPLE 2.14
Invert the matrix

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0 0 0 0
−1 2 −1 0 0 0

0 −1 2 −1 0 0
0 0 −1 2 −1 0
0 0 0 −1 2 −1
0 0 0 0 −1 5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Solution Because the matrix is tridiagonal, we solve AX = I using the functions in the
module LUdecomp3 (LU decomposition of tridiagonal matrices).

#!/usr/bin/python

example2_14

from numpy import ones,identity

from LUdecomp3 import *

n = 6

d = ones((n))*2.0

e = ones((n-1))*(-1.0)

c = e.copy()

d[n-1] = 5.0

aInv = identity(n)

c,d,e = LUdecomp3(c,d,e)

for i in range(n):

aInv[:,i] = LUsolve3(c,d,e,aInv[:,i])

print ’’\nThe inverse matrix is:\n’’,aInv

raw_input(’’\nPress return to exit’’)

Running the program results in the following output:

The inverse matrix is:

[[0.84 0.68 0.52 0.36 0.2 0.04]

[0.68 1.36 1.04 0.72 0.4 0.08]

[0.52 1.04 1.56 1.08 0.6 0.12]

[0.36 0.72 1.08 1.44 0.8 0.16]

[0.2 0.4 0.6 0.8 1. 0.2]

[0.04 0.08 0.12 0.16 0.2 0.24]]]

Note that A is tridiagonal, whereas A−1 is fully populated.

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.004

Cambridge Books Online © Cambridge University Press, 2016

82 Systems of Linear Algebraic Equations

∗2.7 Iterative Methods

Introduction

So far, we have discussed only direct methods of solution. The common character-
istic of these methods is that they compute the solution with a finite number of op-
erations. Moreover, if the computer were capable of infinite precision (no roundoff
errors), the solution would be exact.

Iterative, or indirect methods, start with an initial guess of the solution x and then
repeatedly improve the solution until the change in x becomes negligible. Because
the required number of iterations can be large, the indirect methods are, in general,
slower than their direct counterparts. However, iterative methods do have the follow-
ing advantages that make them attractive for certain problems:

1. It is feasible to store only the nonzero elements of the coefficient matrix. This
makes it possible to deal with very large matrices that are sparse, but not neces-
sarily banded. In many problems, there is no need to store the coefficient matrix
at all.

2. Iterative procedures are self-correcting, meaning that roundoff errors (or even
arithmetic mistakes) in one iterative cycle are corrected in subsequent cycles.

A serious drawback of iterative methods is that they do not always converge to
the solution. It can be shown that convergence is guaranteed only if the coefficient
matrix is diagonally dominant. The initial guess for x plays no role in determining
whether convergence takes place – if the procedure converges for one starting vector,
it would do so for any starting vector. The initial guess affects only the number of
iterations that are required for convergence.

Gauss–Seidel Method

The equations Ax = b are in scalar notation

n∑
j=1

Aij xj = bi , i = 1, 2, ..., n

Extracting the term containing xi from the summation sign yields

Aii xi +
n∑

j=1
j �=i

Aij xj = bi , i = 1, 2, ..., n

Solving for xi , we get

xi = 1
Aii

⎛
⎜⎜⎝bi −

n∑
j=1
j �=i

Aij xj

⎞
⎟⎟⎠ , i = 1, 2, ..., n

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.004

Cambridge Books Online © Cambridge University Press, 2016

83 ∗2.7 Iterative Methods

The last equation suggests the following iterative scheme:

xi ← 1
Aii

⎛
⎜⎜⎝bi −

n∑
j=1
j �=i

Aij xj

⎞
⎟⎟⎠ , i = 1, 2, ..., n (2.34)

We start by choosing the starting vector x. If a good guess for the solution is not avail-
able, x can be chosen randomly. Equation (2.34) is then used to recompute each ele-
ment of x, always using the latest available values of xj . This completes one iteration
cycle. The procedure is repeated until the changes in x between successive iteration
cycles become sufficiently small.

Convergence of the Gauss–Seidel method can be improved by a technique
known as relaxation. The idea is to take the new value of xi as a weighted average
of its previous value and the value predicted by Eq. (2.34). The corresponding itera-
tive formula is

xi ← ω

Aii

⎛
⎜⎜⎝bi −

n∑
j=1
j �=i

Aij xj

⎞
⎟⎟⎠+ (1 − ω)xi , i = 1, 2, ..., n (2.35)

where the weight ω is called the relaxation factor. It can be seen that if ω = 1, no
relaxation takes place, because Eqs. (2.34) and (2.35) produce the same result. If ω <

1, Eq. (2.35) represents interpolation between the old xi and the value given by Eq.
(2.34). This is called under-relaxation. In cases where ω > 1, we have extrapolation,
or over-relaxation.

There is no practical method of determining the optimal value of ω beforehand;
however, a good estimate can be computed during run time. Let �x(k) = ∣∣x(k−1) − x(k)

∣∣
be the magnitude of the change in x during the kth iteration (carried out without
relaxation, that is, with ω = 1). If k is sufficiently large (say, k ≥ 5), it can be shown2

that an approximation of the optimal value of ω is

ωopt ≈ 2

1 +
√

1 − (�x(k+p)/�x(k)
)1/p

(2.36)

where p is a positive integer.
The essential elements of a Gauss–Seidel algorithm with relaxation are:

1. Carry out k iterations with ω = 1 (k = 10 is reasonable). After the kth iteration,
record �x(k).

2. Perform an additional p iterations and record �x(k+p) for the last iteration.
3. Perform all subsequent iterations with ω = ωopt, where ωopt is computed from

Eq. (2.36).

2 See, for example, Terrence J. Akai, Applied Numerical Methods for Engineers (John Wiley & Sons,
1994), p. 100.

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.004

Cambridge Books Online © Cambridge University Press, 2016

84 Systems of Linear Algebraic Equations

� gaussSeidel

The function gaussSeidel is an implementation of the Gauss–Seidel method with
relaxation. It automatically computes ωopt from Eq. (2.36) using k = 10 and p = 1.
The user must provide the function iterEqs that computes the improved x from
the iterative formulas in Eq. (2.35) – see Example 2.17. The function gaussSeidel

returns the solution vector x, the number of iterations carried out, and the value of
ωopt used.

module gaussSeidel

’’’ x,numIter,omega = gaussSeidel(iterEqs,x,tol = 1.0e-9)

Gauss-Seidel method for solving [A]{x} = {b}.

The matrix [A] should be sparse. User must supply the

function iterEqs(x,omega) that returns the improved {x},

given the current {x} (’omega’ is the relaxation factor).

’’’

from numpy import dot

from math import sqrt

def gaussSeidel(iterEqs,x,tol = 1.0e-9):

omega = 1.0

k = 10

p = 1

for i in range(1,501):

xOld = x.copy()

x = iterEqs(x,omega)

dx = sqrt(dot(x-xOld,x-xOld))

if dx < tol: return x,i,omega

Compute of relaxation factor after k+p iterations

if i == k: dx1 = dx

if i == k + p:

dx2 = dx

omega = 2.0/(1.0 + sqrt(1.0 - (dx2/dx1)**(1.0/p)))

print ’Gauss-Seidel failed to converge’

Conjugate Gradient Method

Consider the problem of finding the vector x that minimizes the scalar function

f (x) = 1
2

xT Ax − bT x (2.37)

where the matrix A is symmetric and positive definite. Because f (x) is minimized
when its gradient ∇ f = Ax − b is zero, we see that minimization is equivalent to
solving

Ax = b (2.38)

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.004

Cambridge Books Online © Cambridge University Press, 2016

85 ∗2.7 Iterative Methods

Gradient methods accomplish the minimization by iteration, starting with an
initial vector x0. Each iterative cycle k computes a refined solution

xk+1 = xk + αk sk (2.39)

The step length αk is chosen so that xk+1 minimizes f (xk+1) in the search direction sk .
That is, xk+1 must satisfy Eq. (2.38):

A(xk + αk sk) = b (a)

When we introduce the residual

rk = b − Axk (2.40)

Eq. (a) becomes αAsk = rk . Premultiplying both sides by sT
k and solving for αk , we

obtain

αk = sT
k rk

sT
k Ask

(2.41)

We are still left with the problem of determining the search direction sk . Intuition
tells us to choose sk = −∇ f = rk , because this is the direction of the largest negative
change in f (x). The resulting procedure is known as the method of steepest descent. It
is not a popular algorithm because its convergence can be slow. The more efficient
conjugate gradient method uses the search direction

sk+1 = rk+1 + βk sk (2.42)

The constant βk is chosen so that the two successive search directions are conjugate
to each other, meaning

sT
k+1Ask = 0 (b)

The great attraction of conjugate gradients is that minimization in one conjugate di-
rection does not undo previous minimizations (minimizations do not interfere with
one another).

Substituting sk+1 from Eq. (2.42) into Eq. (b), we get

(
rT

k+1 + βk sT
k

)
Ask = 0

which yields

βk = −rT
k+1Ask

sT
k Ask

(2.43)

Here is the outline of the conjugate gradient algorithm:

• Choose x0 (any vector will do, but one close to solution results in fewer iterations)
• r0 ← b − Ax0

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.004

Cambridge Books Online © Cambridge University Press, 2016

86 Systems of Linear Algebraic Equations

• s0 ← r0 (lacking a previous search direction, choose the direction of steepest
descent)

• do with k = 0, 1, 2, . . .

αk ← sT
k rk

sT
k Ask

xk+1 ← xk + αk sk

rk+1 ← b − Axk+1

if |rk+1| ≤ ε exit loop (ε is the error tolerance)

βk ← −rT
k+1Ask

sT
k Ask

sk+1 ← rk+1 + βk sk

end do
It can be shown that the residual vectors r1, r2, r3, . . . produced by the algorithm

are mutually orthogonal, that is, ri · r j = 0, i �= j . Now suppose that we have carried
out enough iterations to have computed the whole set of n residual vectors. The resid-
ual resulting from the next iteration must be a null vector (rn+1 = 0), indicating that
the solution has been obtained. It thus appears that the conjugate gradient algorithm
is not an iterative method at all, because it reaches the exact solution after n compu-
tational cycles. In practice, however, convergence is usually achieved in fewer than n
iterations.

The conjugate gradient method is not competitive with direct methods in the
solution of small sets of equations. Its strength lies in the handling of large, sparse
systems (where most elements of A are zero). It is important to note that A enters the
algorithm only through its multiplication by a vector, that is, in the form Av, where v
is a vector (either xk+1 or sk). If A is sparse, it is possible to write an efficient subrou-
tine for the multiplication and pass it, rather than A itself, to the conjugate gradient
algorithm.

� conjGrad

The function conjGrad shown here implements the conjugate gradient algorithm.
The maximum allowable number of iterations is set to n (the number of unknowns).
Note that conjGrad calls the function Av, which returns the product Av. This func-
tion must be supplied by the user (see Example 2.18). We must also supply the start-
ing vector x0 and the constant (right-hand-side) vector b. The function returns the
solution vector x and the number of iterations.

module conjGrad

’’’ x, numIter = conjGrad(Av,x,b,tol=1.0e-9)

Conjugate gradient method for solving [A]{x} = {b}.

The matrix [A] should be sparse. User must supply

the function Av(v) that returns the vector [A]{v}.

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.004

Cambridge Books Online © Cambridge University Press, 2016

87 ∗2.7 Iterative Methods

’’’

from numpy import dot

from math import sqrt

def conjGrad(Av,x,b,tol=1.0e-9):

n = len(b)

r = b - Av(x)

s = r.copy()

for i in range(n):

u = Av(s)

alpha = dot(s,r)/dot(s,u)

x = x + alpha*s

r = b - Av(x)

if(sqrt(dot(r,r))) < tol:

break

else:

beta = -dot(r,u)/dot(s,u)

s = r + beta*s

return x,i

EXAMPLE 2.15
Solve the equations

⎡
⎢⎣ 4 −1 1

−1 4 −2
1 −2 4

⎤
⎥⎦
⎡
⎢⎣ x1

x2

x3

⎤
⎥⎦ =

⎡
⎢⎣ 12

−1
5

⎤
⎥⎦

by the Gauss–Seidel method without relaxation.

Solution With the given data, the iteration formulas in Eq. (2.34) become

x1 = 1
4

(12 + x2 − x3)

x2 = 1
4

(−1 + x1 + 2x3)

x3 = 1
4

(5 − x1 + 2x2)

Choosing the starting values x1 = x2 = x3 = 0, the first iteration gives us

x1 = 1
4

(12 + 0 − 0) = 3

x2 = 1
4

[−1 + 3 + 2(0)] = 0.5

x3 = 1
4

[5 − 3 + 2(0.5)] = 0.75

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.004

Cambridge Books Online © Cambridge University Press, 2016

88 Systems of Linear Algebraic Equations

The second iteration yields

x1 = 1
4

(12 + 0.5 − 0.75) = 2.9375

x2 = 1
4

[−1 + 2.9375 + 2(0.75)] = 0.859 38

x3 = 1
4

[5 − 2.9375 + 2(0.859 38)] = 0 .945 31

and the third iteration results in

x1 = 1
4

(12 + 0.85938 − 0 .94531) = 2.978 52

x2 = 1
4

[−1 + 2.97852 + 2(0 .94531)] = 0.967 29

x3 = 1
4

[5 − 2.97852 + 2(0.96729)] = 0.989 02

After five more iterations the results would agree with the exact solution x1 = 3,
x2 = x3 = 1 within five decimal places.

EXAMPLE 2.16
Solve the equations in Example 2.15 by the conjugate gradient method.

Solution The conjugate gradient method should converge after three iterations.
Choosing again for the starting vector

x0 =
[

0 0 0
]T

the computations outlined in the text proceed as follows:

First iteration

r0 = b − Ax0 =

⎡
⎢⎣ 12

−1
5

⎤
⎥⎦−

⎡
⎢⎣ 4 −1 1

−1 4 −2
1 −2 4

⎤
⎥⎦
⎡
⎢⎣0

0
0

⎤
⎥⎦ =

⎡
⎢⎣ 12

−1
5

⎤
⎥⎦

s0 = r0 =

⎡
⎢⎣ 12

−1
5

⎤
⎥⎦

As0 =

⎡
⎢⎣ 4 −1 1

−1 4 −2
1 −2 4

⎤
⎥⎦
⎡
⎢⎣ 12

−1
5

⎤
⎥⎦ =

⎡
⎢⎣ 54

−26
34

⎤
⎥⎦

α0 = sT
0 r0

sT
0 As0

= 122 + (−1)2 + 52

12(54) + (−1)(−26) + 5(34)
= 0.201 42

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.004

Cambridge Books Online © Cambridge University Press, 2016

89 ∗2.7 Iterative Methods

x1 = x0 + α0s0 =

⎡
⎢⎣0

0
0

⎤
⎥⎦+ 0.201 42

⎡
⎢⎣ 12

−1
5

⎤
⎥⎦ =

⎡
⎢⎣ 2.41 704

−0. 201 42
1.007 10

⎤
⎥⎦

Second iteration

r1 = b − Ax1 =

⎡
⎢⎣ 12

−1
5

⎤
⎥⎦−

⎡
⎢⎣ 4 −1 1

−1 4 −2
1 −2 4

⎤
⎥⎦
⎡
⎢⎣ 2.417 04

−0. 201 42
1.007 10

⎤
⎥⎦ =

⎡
⎢⎣ 1.123 32

4.236 92
−1.848 28

⎤
⎥⎦

β0 = −rT
1 As0

sT
0 As0

= −1.123 32(54) + 4.236 92(−26) − 1.848 28(34)
12(54) + (−1)(−26) + 5(34)

= 0.133 107

s1 = r1 + β0s0 =

⎡
⎢⎣ 1.123 32

4.236 92
−1.848 28

⎤
⎥⎦+ 0.133 107

⎡
⎢⎣ 12

−1
5

⎤
⎥⎦ =

⎡
⎢⎣ 2.720 76

4.103 80
−1.182 68

⎤
⎥⎦

As1 =

⎡
⎢⎣ 4 −1 1

−1 4 −2
1 −2 4

⎤
⎥⎦
⎡
⎢⎣ 2.720 76

4.103 80
−1.182 68

⎤
⎥⎦ =

⎡
⎢⎣ 5.596 56

16.059 80
−10.217 60

⎤
⎥⎦

α1 = sT
1 r1

sT
1 As1

= 2.720 76(1.123 32) + 4.103 80(4.236 92) + (−1.182 68)(−1.848 28)
2.720 76(5.596 56) + 4.103 80(16.059 80) + (−1.182 68)(−10.217 60)

= 0.24276

x2 = x1 + α1s1 =

⎡
⎢⎣ 2.417 04

−0. 201 42
1.007 10

⎤
⎥⎦+ 0.24276

⎡
⎢⎣ 2. 720 76

4. 103 80
−1. 182 68

⎤
⎥⎦ =

⎡
⎢⎣ 3.077 53

0.794 82
0.719 99

⎤
⎥⎦

Third iteration

r2 = b − Ax2 =

⎡
⎢⎣ 12

−1
5

⎤
⎥⎦−

⎡
⎢⎣ 4 −1 1

−1 4 −2
1 −2 4

⎤
⎥⎦
⎡
⎢⎣ 3.077 53

0.794 82
0.719 99

⎤
⎥⎦ =

⎡
⎢⎣−0.235 29

0.338 23
0.632 15

⎤
⎥⎦

β1 = −rT
2 As1

sT
1 As1

= − (−0.235 29)(5.596 56) + 0.338 23(16.059 80) + 0.632 15(−10.217 60)
2.720 76(5.596 56) + 4.103 80(16.059 80) + (−1.182 68)(−10.217 60)

= 0.0251 452

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.004

Cambridge Books Online © Cambridge University Press, 2016

90 Systems of Linear Algebraic Equations

s2 = r2 + β1s1 =

⎡
⎢⎣−0.235 29

0.338 23
0.632 15

⎤
⎥⎦+ 0.025 1452

⎡
⎢⎣ 2.720 76

4.103 80
−1.182 68

⎤
⎥⎦ =

⎡
⎢⎣−0.166 876

0.441 421
0.602 411

⎤
⎥⎦

As2 =

⎡
⎢⎣ 4 −1 1

−1 4 −2
1 −2 4

⎤
⎥⎦
⎡
⎢⎣−0.166 876

0.441 421
0.602 411

⎤
⎥⎦ =

−0.506 514
0.727 738
1.359 930

α2 = rT
2 s2

sT
2 As2

= (−0.235 29)(−0.166 876) + 0.338 23(0.441 421) + 0.632 15(0.602 411)
(−0.166 876)(−0.506 514) + 0.441 421(0.727 738) + 0.602 411(1.359 930)

= 0.464 80

x3 = x2 + α2s2 =

⎡
⎢⎣ 3.077 53

0.794 82
0.719 99

⎤
⎥⎦+ 0.464 80

⎡
⎢⎣−0.166 876

0.441 421
0.602 411

⎤
⎥⎦ =

⎡
⎢⎣2.999 97

0.999 99
0.999 99

⎤
⎥⎦

The solution x3 is correct to almost five decimal places. The small discrepancy is
caused by roundoff errors in the computations.

EXAMPLE 2.17
Write a computer program to solve the following n simultaneous equations by the
Gauss–Seidel method with relaxation (the program should work with any value of n3):⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0 0 . . . 0 0 0 1
−1 2 −1 0 . . . 0 0 0 0

0 −1 2 −1 . . . 0 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 . . . −1 2 −1 0
0 0 0 0 . . . 0 −1 2 −1
1 0 0 0 . . . 0 0 −1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

...
xn−2

xn−1

xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
...
0
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Run the program with n = 20. The exact solution can be shown to be xi = −n/4 + i/2,
i = 1, 2, ..., n.

Solution In this case the iterative formulas in Eq. (2.35) are

x1 = ω(x2 − xn)/2 + (1 − ω)x1

xi = ω(xi−1 + xi+1)/2 + (1 − ω)xi , i = 2, 3, . . . , n − 1 (a)

xn = ω(1 − x1 + xn−1)/2 + (1 − ω)xn

These formulas are evaluated in the function iterEqs.

3 Equations of this form are called cyclic tridiagonal. They occur in the finite difference formulation
of second-order differential equations with periodic boundary conditions.

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.004

Cambridge Books Online © Cambridge University Press, 2016

91 ∗2.7 Iterative Methods

#!/usr/bin/python

example2_17

from numpy import zeros

from gaussSeidel import *

def iterEqs(x,omega):

n = len(x)

x[0] =omega*(x[1] - x[n-1])/2.0 + (1.0 - omega)*x[0]

for i in range(1,n-1):

x[i] = omega*(x[i-1] + x[i+1])/2.0 + (1.0 - omega)*x[i]

x[n-1] = omega*(1.0 - x[0] + x[n-2])/2.0 \

+ (1.0 - omega)*x[n-1]

return x

n = eval(raw_input("Number of equations ==> "))

x = zeros(n)

x,numIter,omega = gaussSeidel(iterEqs,x)

print "\nNumber of iterations =",numIter

print "\nRelaxation factor =",omega

print "\nThe solution is:\n",x

raw_input("\nPress return to exit")

The output from the program is:

Number of equations ==> 20

Number of iterations = 259

Relaxation factor = 1.70545231071

The solution is:

[-4.50000000e+00 -4.00000000e+00 -3.50000000e+00 -3.00000000e+00

-2.50000000e+00 -2.00000000e+00 -1.50000000e+00 -9.99999997e-01

-4.99999998e-01 2.14046747e-09 5.00000002e-01 1.00000000e+00

1.50000000e+00 2.00000000e+00 2.50000000e+00 3.00000000e+00

3.50000000e+00 4.00000000e+00 4.50000000e+00 5.00000000e+00]

The convergence is very slow, because the coefficient matrix lacks diagonal
dominance – substituting the elements of A into Eq. (2.30) produces an equality
rather than the desired inequality. If we were to change each diagonal term of the
coefficient from 2 to 4, A would be diagonally dominant and the solution would con-
verge in only 17 iterations.

EXAMPLE 2.18
Solve Example 2.17 with the conjugate gradient method, also using n = 20.

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.004

Cambridge Books Online © Cambridge University Press, 2016

92 Systems of Linear Algebraic Equations

Solution The program shown here utilizes the function conjGrad. The solution vec-
tor x is initialized to zero in the program, which also sets up the constant vector b.
The function Av(v) returns the product Av, where A is the coefficient matrix and v is
a vector. For the given A, the components of the vector Av are

(Av)1 = 2v1 − v2 + vn

(Av)i = −vi−1 + 2vi − vi+1, i = 2, 3, . . . , n − 1

(Av)n = −vn−1 + 2vn + v1

which are evaluated by the function Av(v).

#!/usr/bin/python

example2_18

from numpy import zeros,sqrt

from conjGrad import *

def Ax(v):

n = len(v)

Ax = zeros(n)

Ax[0] = 2.0*v[0] - v[1]+v[n-1]

Ax[1:n-1] = -v[0:n-2] + 2.0*v[1:n-1] -v [2:n]

Ax[n-1] = -v[n-2] + 2.0*v[n-1] + v[0]

return Ax

n = eval(raw_input("Number of equations ==> "))

b = zeros(n)

b[n-1] = 1.0

x = zeros(n)

x,numIter = conjGrad(Ax,x,b)

print "\nThe solution is:\n",x

print "\nNumber of iterations =",numIter

raw_input("\nPress return to exit")

Running the program results in

Number of equations ==> 20

The solution is:

[-4.5 -4. -3.5 -3. -2.5 -2. -1.5 -1. -0.5 0. 0.5 1. 1.5

2. 2.5 3. 3.5 4. 4.5 5.]

Number of iterations = 9

Note that convergence was reached in only 9 iterations, whereas 259 iterations
were required in the Gauss–Seidel method.

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.004

Cambridge Books Online © Cambridge University Press, 2016

93 ∗2.7 Iterative Methods

PROBLEM SET 2.3

1. Let

A =

⎡
⎢⎣ 3 −1 2

0 1 3
−2 2 −4

⎤
⎥⎦ B =

⎡
⎢⎣ 0 1 3

3 −1 2
−2 2 −4

⎤
⎥⎦

(note that B is obtained by interchanging the first two rows of A). Knowing that

A−1 =

⎡
⎢⎣ 0.5 0 0.25

0.3 0.4 0.45
−0.1 0.2 −0.15

⎤
⎥⎦

determine B−1.

2. Invert the triangular matrices

A =

⎡
⎢⎣2 4 3

0 6 5
0 0 2

⎤
⎥⎦ B =

⎡
⎢⎣2 0 0

3 4 0
4 5 6

⎤
⎥⎦

3. Invert the triangular matrix

A =

⎡
⎢⎢⎢⎣

1 1/2 1/4 1/8
0 1 1/3 1/9
0 0 1 1/4
0 0 0 1

⎤
⎥⎥⎥⎦

4. Invert the following matrices:

(a) A =

⎡
⎢⎣1 2 4

1 3 9
1 4 16

⎤
⎥⎦ (b) B =

⎡
⎢⎣ 4 −1 0

−1 4 −1
0 −1 4

⎤
⎥⎦

5. Invert the matrix

A =

⎡
⎢⎣ 4 −2 1

−2 1 −1
1 −2 4

⎤
⎥⎦

6. � Invert the following matrices with any method:

A =

⎡
⎢⎢⎢⎣

5 −3 −1 0
−2 1 1 1

3 −5 1 2
0 8 −4 −3

⎤
⎥⎥⎥⎦ B =

⎡
⎢⎢⎢⎣

4 −1 0 0
−1 4 −1 0

0 −1 4 −1
0 0 −1 4

⎤
⎥⎥⎥⎦

7. � Invert the matrix by any method:

A =

⎡
⎢⎢⎢⎢⎢⎣

1 3 −9 6 4
2 −1 6 7 1
3 2 −3 15 5
8 −1 1 4 2

11 1 −2 18 7

⎤
⎥⎥⎥⎥⎥⎦

and comment on the reliability of the result.

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.004

Cambridge Books Online © Cambridge University Press, 2016

94 Systems of Linear Algebraic Equations

8. � The joint displacements u of the plane truss in Problem 14, Problem Set 2.2,
are related to the applied joint forces p by

Ku = p (a)

where

K =

⎡
⎢⎢⎢⎢⎢⎣

27.580 7.004 −7.004 0.000 0.000
7.004 29.570 −5.253 0.000 −24.320

−7.004 −5.253 29.570 0.000 0.000
0.000 0.000 0.000 27.580 −7.004
0.000 −24.320 0.000 −7.004 29.570

⎤
⎥⎥⎥⎥⎥⎦ MN/m

is called the stiffness matrix of the truss. If Eq. (a) is inverted by multiplying each
side by K−1, we obtain u = K−1p, where K−1 is known as the flexibility matrix.
The physical meaning of the elements of the flexibility matrix is K −1

ij = displace-
ments ui (i = 1, 2, . . . 5) produced by the unit load pj = 1. Compute (a) the flex-
ibility matrix of the truss; (b) the displacements of the joints due to the load
p5 = −45 kN (the load shown in Problem 14, Problem Set 2.2).

9. � Invert the matrices

A =

⎡
⎢⎢⎢⎣

3 −7 45 21
12 11 10 17

6 25 −80 −24
17 55 −9 7

⎤
⎥⎥⎥⎦ B =

⎡
⎢⎢⎢⎣

1 1 1 1
1 2 2 2
2 3 4 4
4 5 6 7

⎤
⎥⎥⎥⎦

10. � Write a program for inverting on n × n lower triangular matrix. The inversion
procedure should contain only forward substitution. Test the program by invert-
ing the matrix

A =

⎡
⎢⎢⎢⎣

36 0 0 0
18 36 0 0

9 12 36 0
5 4 9 36

⎤
⎥⎥⎥⎦

11. Use the Gauss–Seidel method to solve⎡
⎢⎣−2 5 9

7 1 1
−3 7 −1

⎤
⎥⎦
⎡
⎢⎣ x1

x2

x3

⎤
⎥⎦ =

⎡
⎢⎣ 1

6
−26

⎤
⎥⎦

12. Solve the following equations with the Gauss–Seidel method:

⎡
⎢⎢⎢⎣

12 −2 3 1
−2 15 6 −3

1 6 20 −4
0 −3 2 9

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0
0

20
0

⎤
⎥⎥⎥⎦

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.004

Cambridge Books Online © Cambridge University Press, 2016

95 ∗2.7 Iterative Methods

13. Use the Gauss–Seidel method with relaxation to solve Ax = b, where

A =

⎡
⎢⎢⎢⎣

4 −1 0 0
−1 4 −1 0

0 −1 4 −1
0 0 −1 3

⎤
⎥⎥⎥⎦ b =

⎡
⎢⎢⎢⎣

15
10
10
10

⎤
⎥⎥⎥⎦

Take xi = bi/Aii as the starting vector and use ω = 1.1 for the relaxation factor.
14. Solve the equations

⎡
⎢⎣ 2 −1 0

−1 2 −1
0 −1 1

⎤
⎥⎦
⎡
⎢⎣ x1

x2

x3

⎤
⎥⎦ =

⎡
⎢⎣1

1
1

⎤
⎥⎦

by the conjugate gradient method. Start with x = 0.
15. Use the conjugate gradient method to solve

⎡
⎢⎣ 3 0 −1

0 4 −2
−1 −2 5

⎤
⎥⎦
⎡
⎢⎣ x1

x2

x3

⎤
⎥⎦ =

⎡
⎢⎣ 4

10
−10

⎤
⎥⎦

starting with x = 0.
16. � Solve the simultaneous equations Ax = b and Bx = b by the Gauss–Seidel

method with relaxation, where

b =
[

10 −8 10 10 −8 10
]T

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 −2 1 0 0 0
−2 4 −2 1 0 0

1 −2 4 −2 1 0
0 1 −2 4 −2 1
0 0 1 −2 4 −2
0 0 0 1 −2 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 −2 1 0 0 1
−2 4 −2 1 0 0

1 −2 4 −2 1 0
0 1 −2 4 −2 1
0 0 1 −2 4 −2
1 0 0 1 −2 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Note that A is not diagonally dominant, but that does not necessarily preclude
convergence.

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.004

Cambridge Books Online © Cambridge University Press, 2016

96 Systems of Linear Algebraic Equations

17. � Modify the program in Example 2.17 (Gauss–Seidel method) so that it will solve
the following equations:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 −1 0 0 · · · 0 0 0 1
−1 4 −1 0 · · · 0 0 0 0

0 −1 4 −1 · · · 0 0 0 0
...

...
...

... · · · ...
...

...
...

0 0 0 0 · · · −1 4 −1 0
0 0 0 0 · · · 0 −1 4 −1
1 0 0 0 · · · 0 0 −1 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

...
xn−2

xn−1

xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
...
0
0

100

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Run the program with n = 20 and compare the number of iterations with Exam-
ple 2.17.

18. � Modify the program in Example 2.18 to solve the equations in Problem 17 by
the conjugate gradient method. Run the program with n = 20.

19. �

T = 0

T = 200

T = 100T = 0

0

0

0 0

1 2 3

4 5 6

7 8 9

The edges of the square plate are kept at the temperatures shown. Assuming
steady-state heat conduction, the differential equation governing the tempera-
ture T in the interior is

∂2T
∂x2

+ ∂2T
∂y2

= 0

If this equation is approximated by finite differences using the mesh shown, we
obtain the following algebraic equations for temperatures at the mesh points:

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.004

Cambridge Books Online © Cambridge University Press, 2016

97 ∗2.8 Other Methods

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−4 1 0 1 0 0 0 0 0
1 −4 1 0 1 0 0 0 0
0 1 −4 0 0 1 0 0 0
1 0 0 −4 1 0 1 0 0
0 1 0 1 −4 1 0 1 0
0 0 1 0 1 −4 0 0 1
0 0 0 1 0 0 −4 1 0
0 0 0 0 1 0 1 −4 1
0 0 0 0 0 1 0 1 −4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T1

T2

T3

T4

T5

T6

T7

T8

T9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0

100
0
0

100
200
200
300

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Solve these equations with the conjugate gradient method.
20. �

2 kN/m 2 kN/m3 kN/m3 kN/m 3 kN/m 3 kN/m

1 2 3 4 5

80 N 60 N

The equilibrium equations of the blocks in the spring–block system are

3(x2 − x1) − 2x1 = −80

3(x3 − x2) − 3(x2 − x1) = 0

3(x4 − x3) − 3(x3 − x2) = 0

3(x5 − x4) − 3(x4 − x3) = 60

−2x5 − 3(x5 − x4) = 0

where xi are the horizontal displacements of the blocks measured in mm. (a)
Write a program that solves these equations by the Gauss–Seidel method with-
out relaxation. Start with x = 0 and iterate until four-figure accuracy after the
decimal point is achieved. Also print the number of iterations required. (b) Solve
the equations using the function gaussSeidel using the same convergence cri-
terion as in Part (a). Compare the number of iterations in Parts (a) and (b).

21. � Solve the equations in Prob. 20 with the conjugate gradient method utilizing
the function conjGrad. Start with x = 0 and iterate until four-figure accuracy
after the decimal point is achieved.

∗2.8 Other Methods

A matrix can be decomposed in numerous ways, some of which are generally useful,
whereas others find use in special applications. The most important of the latter are
the QR factorization and the singular value decomposition.

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.004

Cambridge Books Online © Cambridge University Press, 2016

98 Systems of Linear Algebraic Equations

The QR decomposition of a matrix A is

A = QR

where Q is an orthogonal matrix (recall that the matrix Q is orthogonal if Q−1 = QT)
and R is an upper triangular matrix. Unlike LU factorization, QR decomposition does
not require pivoting to sustain stability, but it does involve about twice as many op-
erations. Because of its relative inefficiency, the QR factorization is not used as a
general-purpose tool, but finds its niche in applications that put a premium on sta-
bility (e.g., solution of eigenvalue problems).

The singular value decomposition is useful in dealing with singular or ill-
conditioned matrices. Here the factorization is

A = U�VT

where U and V are orthogonal matrices and

� =

⎡
⎢⎢⎢⎢⎣

λ1 0 0 · · ·
0 λ2 0 · · ·
0 0 λ3 · · ·
...

...
...

. . .

⎤
⎥⎥⎥⎥⎦

is a diagonal matrix. The elements λi of � can be shown to be positive or zero. If A
is symmetric and positive definite, then the λs are the eigenvalues of A. A nice char-
acteristic of the singular value decomposition is that it works even if A is singular or
ill conditioned. The conditioning of A can be diagnosed from magnitudes of λs: the
matrix is singular if one or more of the λs are zero, and it is ill conditioned if λmax/λmin

is very large.

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:32 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.004

Cambridge Books Online © Cambridge University Press, 2016

