
Cambridge Books Online

http://ebooks.cambridge.org/

Numerical Methods in Engineering with Python

Jaan Kiusalaas

Book DOI: http://dx.doi.org/10.1017/CBO9780511812224

Online ISBN: 9780511812224

Hardback ISBN: 9780521191326

Paperback ISBN: 9781107435933

Chapter

3 - Interpolation and Curve Fitting pp. 99-138

Chapter DOI: http://dx.doi.org/10.1017/CBO9780511812224.005

Cambridge University Press

3 Interpolation and Curve Fitting

Given the n + 1 data points (xi , yi), i = 0, 1, . . . , n, estimate y(x).

3.1 Introduction

Discrete data sets, or tables of the form

x0 x1 x2 · · · xn

y0 y1 y2 · · · yn

are commonly involved in technical calculations. The source of the data may be ex-
perimental observations or numerical computations. There is a distinction between
interpolation and curve fitting. In interpolation we construct a curve through the
data points. In doing so, we make the implicit assumption that the data points are
accurate and distinct. Curve fitting is applied to data that contains scatter (noise),
usually due to measurement errors. Here we want to find a smooth curve that ap-
proximates the data in some sense. Thus the curve does not necessarily hit the
data points. The difference between interpolation and curve fitting is illustrated in
Fig. 3.1.

3.2 Polynomial Interpolation

Lagrange’s Method

The simplest form of an interpolant is a polynomial. It is always possible to construct
a unique polynomial of degree n that passes through n + 1 distinct data points. One
means of obtaining this polynomial is the formula of Lagrange,

Pn(x) =
n∑

i=0

yi�i (x) (3.1a)

99

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:34 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.005

Cambridge Books Online © Cambridge University Press, 2016

100 Interpolation and Curve Fitting

x

y

Data points

Interpolation

Curve fitting

Figure 3.1. Interpolation and curve fitting
of data.

where the subscript n denotes the degree of the polynomial and

�i (x) = x − x0

xi − x0
· x − x1

xi − x1
· · · x − xi−1

xi − xi−1
· x − xi+1

xi − xi+1
· · · x − xn

xi − xn

=
n∏

j=0
j �=i

x − xi

xi − xj
, i = 0, 1, . . . , n (3.1b)

are called the cardinal functions.
For example, if n = 1, the interpolant is the straight line P1(x) = y0�0(x) +

y1�1(x), where

�0(x) = x − x1

x0 − x1
�1(x) = x − x0

x1 − x0

With n = 2, interpolation is parabolic: P2(x) = y0�0(x) + y1�1(x) + y2�2(x), where now

�0(x) = (x − x1)(x − x2)
(x0 − x1)(x0 − x2)

�1(x) = (x − x0)(x − x2)
(x1 − x0)(x1 − x2)

�2(x) = (x − x0)(x − x1)
(x2 − x0)(x2 − x1)

The cardinal functions are polynomials of degree n and have the property

�i (xj) =
{

0 if i �= j
1 if i = j

}
= δij (3.2)

where δij is the Kronecker delta. This property is illustrated in Fig. 3.2 for three-point
interpolation (n = 2) with x0 = 0, x1 = 2, and x2 = 3.

To prove that the interpolating polynomial passes through the data points, we
substitute x = xj into Eq. (3.1a) and then utilize Eq. (3.2). The result is

Pn(xj) =
n∑

i=0

yi�i (xj) =
n∑

i=0

yiδij = y j

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:34 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.005

Cambridge Books Online © Cambridge University Press, 2016

101 3.2 Polynomial Interpolation

0 1 2 3
0

1

0
2

1

x

l

l

l
Figure 3.2. Example of quadratic cardi-
nal functions.

It can be shown that the error in polynomial interpolation is

f (x) − Pn(x) = (x − x0)(x − x1) · · · (x − xn)

(n + 1)!
f (n+1)(ξ) (3.3)

where ξ lies somewhere in the interval (x0, xn); its value is otherwise unknown. It is
instructive to note that the further a data point is from x, the more it contributes to
the error at x.

Newton’s Method

Although Lagrange’s method is conceptually simple, it does not lend itself to an
efficient algorithm. A better computational procedure is obtained with Newton’s
method, where the interpolating polynomial is written in the form

Pn(x) = a0 + (x − x0)a1 + (x − x0)(x − x1)a2 + · · · + (x − x0)(x − x1) · · · (x − xn−1)an

This polynomial lends itself to an efficient evaluation procedure. Consider, for
example, four data points (n = 3). Here the interpolating polynomial is

P3(x) = a0 + (x − x0)a1 + (x − x0)(x − x1)a2 + (x − x0)(x − x1)(x − x2)a3

= a0 + (x − x0) {a1 + (x − x1) [a2 + (x − x2)a3]}

which can be evaluated backward with the following recurrence relations:

P0(x) = a3

P1(x) = a2 + (x − x2)P0(x)

P2(x) = a1 + (x − x1)P1(x)

P3(x) = a0 + (x − x0)P2(x)

For arbitrary n, we have

P0(x) = an Pk (x) = an−k + (x − xn−k)Pk−1(x), k = 1, 2, . . . , n (3.4)

Denoting the x-coordinate array of the data points by xData and the degree of the

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:34 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.005

Cambridge Books Online © Cambridge University Press, 2016

102 Interpolation and Curve Fitting

polynomial by n, we have the following algorithm for computing Pn(x):

p = a[n]

for k in range(1,n+1):

p = a[n-k] + (x - xData[n-k])*p

The coefficients of Pn are determined by forcing the polynomial to pass through
each data point: yi = Pn(xi), i = 0, 1, . . . , n. This yields the simultaneous equations

y0 = a0

y1 = a0 + (x1 − x0)a1

y2 = a0 + (x2 − x0)a1 + (x2 − x0)(x2 − x1)a2 (a)

...

yn = a0 + (xn − x0)a1 + · · · + (xn − x0)(xn − x1) · · · (xn − xn−1)an

Introducing the divided differences

∇yi = yi − y0

xi − x0
, i = 1, 2, . . . , n

∇2yi = ∇yi − ∇y1

xi − x1
, i = 2, 3, . . . , n

∇3yi = ∇2yi − ∇2y2

xi − x2
, i = 3, 4, . . .n (3.5)

...

∇n yn = ∇n−1yn − ∇n−1yn−1

xn − xn−1

the solution of Eqs. (a) is

a0 = y0 a1 = ∇y1 a2 = ∇2y2 · · · an = ∇n yn (3.6)

If the coefficients are computed by hand, it is convenient to work with the format in
Table 3.1 (shown for n = 4).

The diagonal terms (y0, ∇y1, ∇2y2, ∇3y3, and ∇4y4) in the table are the coeffi-
cients of the polynomial. If the data points are listed in a different order, the entries
in the table will change, but the resultant polynomial will be the same – recall that a
polynomial of degree n interpolating n + 1 distinct data points is unique.

x0 y0

x1 y1 ∇y1

x2 y2 ∇y2 ∇2y2

x3 y3 ∇y3 ∇2y3 ∇3y3

x4 y4 ∇y4 ∇2y4 ∇3y4 ∇4y4

Table 3.1

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:34 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.005

Cambridge Books Online © Cambridge University Press, 2016

103 3.2 Polynomial Interpolation

Machine computations can be carried out within a one-dimensional array a em-
ploying the following algorithm (we use the notation m = n + 1 = number of data
points):

a = yData.copy()

for k in range(1,m):

for i in range(k,m):

a[i] = (a[i] - a[k-1])/(xData[i] - xData[k-1])

Initially, a contains the y-coordinates of the data, so that it is identical to the
second column in Table 3.1. Each pass through the outer loop generates the entries
in the next column, which overwrite the corresponding elements of a. Therefore, a
ends up containing the diagonal terms of Table 3.1, that is, the coefficients of the
polynomial.

� newtonPoly

This module contains the two functions required for interpolation by Newton’s
method. Given the data point arrays xData and yData, the function coeffts re-
turns the coefficient array a. After the coefficients are found, the interpolant Pn(x)
can be evaluated at any value of x with the function evalPoly.

module newtonPoly

’’’ p = evalPoly(a,xData,x).

Evaluates Newton’s polynomial p at x. The coefficient

vector {a} can be computed by the function ’coeffts’.

a = coeffts(xData,yData).

Computes the coefficients of Newton’s polynomial.

’’’

def evalPoly(a,xData,x):

n = len(xData) - 1 # Degree of polynomial

p = a[n]

for k in range(1,n+1):

p = a[n-k] + (x -xData[n-k])*p

return p

def coeffts(xData,yData):

m = len(xData) # Number of data points

a = yData.copy()

for k in range(1,m):

a[k:m] = (a[k:m] - a[k-1])/(xData[k:m] - xData[k-1])

return a

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:34 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.005

Cambridge Books Online © Cambridge University Press, 2016

104 Interpolation and Curve Fitting

Neville’s Method

Newton’s method of interpolation involves two steps: computation of the coeffi-
cients, followed by evaluation of the polynomial. This works well if the interpolation
is carried out repeatedly at different values of x using the same polynomial. If only
one point is to be interpolated, a method that computes the interpolant in a single
step, such as Neville’s algorithm, is a better choice.

Let Pk [xi , xi+1, . . . , xi+k] denote the polynomial of degree k that passes through
the k + 1 data points (xi , yi), (xi+1, yi+1), . . . , (xi+k , yi+k). For a single data point, we
have

P0[xi] = yi (3.7)

The interpolant based on two data points is

P1[xi , xi+1] = (x − xi+1)P0[xi] + (xi − x)P0[xi+1]
xi − xi+1

It is easily verified that P1[xi , xi+1] passes through the two data points; that is,
P1[xi , xi+1] = yi when x = xi , and P1[xi , xi+1] = yi+1 when x = xi+1.

The three-point interpolant is

P2[xi , xi+1, xi+2] = (x − xi+2)P1[xi , xi+1] + (xi − x)P1[xi+1, xi+2]
xi − xi+2

To show that this interpolant does intersect the data points, we first substitute x = xi ,
obtaining

P2[xi , xi+1, xi+2] = P1[xi , xi+1] = yi

Similarly, x = xi+2 yields

P2[xi , xi+1, xi+2] = P2[xi+1, xi+2] = yi+2

Finally, when x = xi+1 we have

P1[xi , xi+1] = P1[xi+1, xi+2] = yi+1

so that

P2[xi , xi+1, xi+2] = (xi+1 − xi+2)yi+1 + (xi − xi+1)yi+1

xi − xi+2
= yi+1

Having established the pattern, we can now deduce the general recursive for-
mula:

Pk [xi , xi+1, . . . , xi+k] (3.8)

= (x − xi+k)Pk−1[xi, xi+1, . . . , xi+k−1] + (xi − x)Pk−1[xi+1, xi+2, . . . , xi+k]
xi − xi+k

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:34 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.005

Cambridge Books Online © Cambridge University Press, 2016

105 3.2 Polynomial Interpolation

Given the value of x, the computations can be carried out in the following tabular
format (shown for four data points):

k = 0 k = 1 k = 2 k = 3

x0 P0[x0] = y0 P1[x0, x1] P2[x0, x1, x2] P3[x0, x1, x2, x3]

x1 P0[x1] = y1 P1[x1, x2] P2[x1, x2, x3]

x2 P0[x2] = y2 P1[x2, x3]

x3 P0[x3] = y3

Table 3.2

If we denote the number of data points by m, the algorithm that computes the
elements of the table is

y = yData.copy()

for k in range (1,m):

for i in range(m-k):

y[i] = ((x - xData[i+k])*y[i] + (xData[i] - x)*y[i+1])/ \

(xData[i]-xData[i+k])

This algorithm works with the one-dimensional array y, which initially contains
the y values of the data (the second column in Table 3.2). Each pass through the outer
loop computes the elements of y in the next column, which overwrite the previous
entries. At the end of the procedure, y contains the diagonal terms of the table. The
value of the interpolant (evaluated at x) that passes through all the data points is the
first element of y.

� neville

The following function implements Neville’s method; it returns Pn(x).

module neville

’’’ p = neville(xData,yData,x).

Evaluates the polynomial interpolant p(x) that passes

trough the specified data points by Neville’s method.

’’’

def neville(xData,yData,x):

m = len(xData) # number of data points

y = yData.copy()

for k in range(1,m):

y[0:m-k] = ((x - xData[k:m])*y[0:m-k] + \

(xData[0:m-k] - x)*y[1:m-k+1])/ \

(xData[0:m-k] - xData[k:m])

return y[0]

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:34 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.005

Cambridge Books Online © Cambridge University Press, 2016

106 Interpolation and Curve Fitting

x

-6.0 -4.0 -2.0 0.0 2.0 4.0 6.0

y

-0.20

0.00

0.20

0.40

0.60

0.80

1.00

Figure 3.3. Polynomial interpolant displaying oscillations.

Limitations of Polynomial Interpolation

Polynomial interpolation should be carried out with the smallest feasible number
of data points. Linear interpolation, using the nearest two points, is often sufficient
if the data points are closely spaced. Three to six nearest-neighbor points produce
good results in most cases. An interpolant intersecting more than six points must be
viewed with suspicion. The reason is that the data points that are far from the point
of interest do not contribute to the accuracy of the interpolant. In fact, they can be
detrimental.

The danger of using too many points is illustrated in Fig. 3.3. There are 11 equally
spaced data points represented by the circles. The solid line is the interpolant, a poly-
nomial of degree 10, that intersects all the points. As seen in the figure, a polynomial
of such a high degree has a tendency to oscillate excessively between the data points.
A much smoother result would be obtained by using a cubic interpolant spanning
four nearest-neighbor points.

Polynomial extrapolation (interpolating outside the range of data points) is dan-
gerous. As an example, consider Fig. 3.4. There are six data points, shown as circles.
The fifth-degree interpolating polynomial is represented by the solid line. The inter-
polant looks fine within the range of data points, but drastically departs from the
obvious trend when x > 12. Extrapolating y at x = 14, for example, would be absurd
in this case.

If extrapolation cannot be avoided, the following three measures can be useful:

• Plot the data and visually verify that the extrapolated value makes sense.
• Use a low-order polynomial based on nearest-neighbor data points. Linear or

quadratic interpolant, for example, would yield a reasonable estimate of y(14)
for the data in Fig. 3.4.

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:34 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.005

Cambridge Books Online © Cambridge University Press, 2016

107 3.2 Polynomial Interpolation

x
2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

y

-100

0

100

200

300

400

Figure 3.4. Extrapolation may not follow the trend of data.

• Work with a plot of log x versus log y , which is usually much smoother than the
x–y curve and thus safer to extrapolate. Frequently this plot is almost a straight
line. This is illustrated in Fig. 3.5, which represents the logarithmic plot of the
data in Fig. 3.4.

x

1 10

y

10

100

Figure 3.5. Logarithmic plot of the data in Fig. 3.4.

EXAMPLE 3.1
Given the data points

x 0 2 3

y 7 11 28

use Lagrange’s method to determine y at x = 1.

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:34 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.005

Cambridge Books Online © Cambridge University Press, 2016

108 Interpolation and Curve Fitting

Solution

�0 = (x − x1)(x − x2)
(x0 − x1)(x0 − x2)

= (1 − 2)(1 − 3)
(0 − 2)(0 − 3)

= 1
3

�1 = (x − x0)(x − x2)
(x1 − x0)(x1 − x2)

= (1 − 0)(1 − 3)
(2 − 0)(2 − 3)

= 1

�2 = (x − x0)(x − x1)
(x2 − x0)(x2 − x1)

= (1 − 0)(1 − 2)
(3 − 0)(3 − 2)

= −1
3

y = y0�0 + y1�1 + y2�2 = 7
3

+ 11 − 28
3

= 4

EXAMPLE 3.2
The data points

x −2 1 4 −1 3 −4

y −1 2 59 4 24 −53

lie on a polynomial. Determine the degree of this polynomial by constructing the
divided difference table, similar to Table 3.1.

Solution

i xi yi ∇yi ∇2yi ∇3yi ∇4yi ∇5yi

0 −2 −1

1 1 2 1

2 4 59 10 3

3 −1 4 5 −2 1

4 3 24 5 2 1 0

5 −4 −53 26 −5 1 0 0

Here are a few sample calculations used in arriving at the figures in the table:

∇y2 = y2 − y0

x2 − x0
= 59 − (−1)

4 − (−2)
= 10

∇2y2 = ∇y2 − ∇y1

x2 − x1
= 10 − 1

4 − 1
= 3

∇3y5 = ∇2y5 − ∇2y2

x5 − x2
= −5 − 3

−4 − 4
= 1

From the table we see that the last nonzero coefficient (last nonzero diagonal term)
of Newton’s polynomial is ∇3y3, which is the coefficient of the cubic term. Hence, the
polynomial is a cubic.

EXAMPLE 3.3
Given the data points

x 4.0 3.9 3.8 3.7

y −0.06604 −0.02724 0.01282 0.05383

determine the root of y(x) = 0 by Neville’s method.

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:34 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.005

Cambridge Books Online © Cambridge University Press, 2016

109 3.2 Polynomial Interpolation

Solution This is an example of inverse interpolation, where the roles of x and y are
interchanged. Instead of computing y at a given x, we are finding x that corresponds
to a given y (in this case, y = 0). Employing the format of Table 3.2 (with x and y
interchanged, of course), we obtain

i yi P0[] = xi P1[,] P2[, ,] P3[, , ,]

0 −0.06604 4.0 3.8298 3.8316 3.8317

1 −0.02724 3.9 3.8320 3.8318

2 0.01282 3.8 3.8313

3 0.05383 3.7

The following are sample computations used in the table:

P1[y0, y1] = (y − y1)P0[y0] + (y0 − y)P0[y1]
y0 − y1

= (0 + 0.02724)(4.0) + (−0.06604 − 0)(3.9)
−0.06604 + 0.02724

= 3.8298

P2[y1, y2, y3] = (y − y3)P1[y1, y2] + (y1 − y)P1[y2, y3]
y1 − y3

= (0 − 0.05383)(3.8320) + (−0.02724 − 0)(3.8313)
−0.02724 − 0.05383

= 3.8318

All the Ps in the table are estimates of the root resulting from different orders of
interpolation involving different data points. For example, P1[y0, y1] is the root ob-
tained from linear interpolation based on the first two points, and P2[y1, y2, y3] is
the result from quadratic interpolation using the last three points. The root obtained
from cubic interpolation over all four data points is x = P3[y0, y1, y2, y3] = 3.8317.

EXAMPLE 3.4
The data points in the table lie on the plot of f (x) = 4.8 cos

πx
20

. Interpolate this data

by Newton’s method at x = 0, 0.5, 1.0, . . . , 8.0 and compare the results with the “ex-
act” values yi = f (xi).

x 0.15 2.30 3.15 4.85 6.25 7.95

y 4.79867 4.49013 4.2243 3.47313 2.66674 1.51909

Solution

#!/usr/bin/python

example3_4

from numpy import array,arange

from math import pi,cos

from newtonPoly import *

xData = array([0.15,2.3,3.15,4.85,6.25,7.95])

yData = array([4.79867,4.49013,4.2243,3.47313,2.66674,1.51909])

a = coeffts(xData,yData)

print ’’ x yInterp yExact’’

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:34 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.005

Cambridge Books Online © Cambridge University Press, 2016

110 Interpolation and Curve Fitting

print ’’-----------------------’’

for x in arange(0.0,8.1,0.5):

y = evalPoly(a,xData,x)

yExact = 4.8*cos(pi*x/20.0)

print ’’%3.1f %9.5f %9.5f’’% (x,y,yExact)

raw_input(’’\nPress return to exit’’)

The results are:

x yInterp yExact

0.0 4.80003 4.80000

0.5 4.78518 4.78520

1.0 4.74088 4.74090

1.5 4.66736 4.66738

2.0 4.56507 4.56507

2.5 4.43462 4.43462

3.0 4.27683 4.27683

3.5 4.09267 4.09267

4.0 3.88327 3.88328

4.5 3.64994 3.64995

5.0 3.39411 3.39411

5.5 3.11735 3.11735

6.0 2.82137 2.82137

6.5 2.50799 2.50799

7.0 2.17915 2.17915

7.5 1.83687 1.83688

8.0 1.48329 1.48328

Rational Function Interpolation

Some data is better interpolated by rational functions rather than polynomials. A ra-
tional function R(x) is the quotient of two polynomials:

R(x) = Pm(x)
Qn(x)

= a1xm + a2xm−1 + · · · + amx + am+1

b1xn + b2xn−1 + · · · + bnx + bn+1

Because R(x) is a ratio, it can be scaled so that one of the coefficients (usually bn+1)
is unity. That leaves m + n + 1 undetermined coefficients that must be computed by
forcing R(x) through m + n + 1 data points.

A popular version of R(x) is the diagonal rational function, where the degree of
the numerator is equal to that of the denominator (m = n) if m + n is even, or less by
1 (m = n − 1) if m + n is odd. The advantage of using the diagonal form is that the in-
terpolation can be carried out with a Neville-type algorithm, similar to that outlined
in Table 3.2. The recursive formula that is the basis of the algorithm is due to Stoer

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:34 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.005

Cambridge Books Online © Cambridge University Press, 2016

111 3.2 Polynomial Interpolation

k = −1 k = 0 k = 1 k = 2 k = 3

x1 0 R[x1] = y1 R[x1, x2] R[x1, x2, x3] R[x1, x2, x3, x4]

x2 0 R[x2] = y2 R[x2, x3] R[x2, x3, x4]

x3 0 R[x3] = y3 R[x3, x4]

x4 0 R[x4] = y4

Table 3.3

and Bulirsch.1 It is somewhat more complex than Eq. (3.8) used in Neville’s method:

R[xi , xi+1, . . . , xi+k] = R[xi+1, xi+2, . . . , xi+k] (3.9a)

+ R[xi+1, xi+2, . . . , xi+k] − R[xi , xi+1, . . . , xi+k−1]
S

where

S = x − xi

x − xi+k

(
1 − R[xi+1, xi+2, . . . , xi+k] − R[xi , xi+1, . . . , xi+k−1]

R[xi+1, xi+2, . . . , xi+k] − R[xi+1, xi+2, . . . , xi+k−1]

)
− 1 (3.9b)

In Eqs. (3.9) R[xi , xi+1, . . . , xi+k] denotes the diagonal rational function that passes
through the data points (xi , yi), (xi+1, yi+1), . . . , (xi+k , yi+k). It is also understood that
R[xi , xi+1, . . . , xi−1] = 0 (corresponding to the case k = −1) and R[xi] = yi (the case
k = 0).

The computations can be carried out in a tableau, similar to Table 3.2 used for
Neville’s method. An example of the tableau for four data points is shown in Table 3.3.
We start by filling the column k = −1 with zeroes and entering the values of yi in the
column k = 0. The remaining entries are computed by applying Eqs. (3.9).

� rational

We managed to implement Neville’s algorithm with the tableau “compressed” to a
one-dimensional array. This will not work with the rational function interpolation,
where the formula for computing an R in the kth column involves entries in columns
k − 1 as well as k − 2. However, we can work with two one-dimensional arrays, one
array (called r in the program) containing the latest values of R while the other array
(rOld) saves the previous entries. Here is the algorithm for diagonal rational function
interpolation:

module rational

’’’ p = rational(xData,yData,x)

Evaluates the diagonal rational function interpolant p(x)

that passes through he data points

’’’

from numpy import zeros

1 J. Stoer, and R. Bulirsch, Introduction to Numerical Analysis (Springer, 1980).

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:34 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.005

Cambridge Books Online © Cambridge University Press, 2016

112 Interpolation and Curve Fitting

def rational(xData,yData,x):

m = len(xData)

r = yData.copy()

rOld = zeros(m)

for k in range(m-1):

for i in range(m-k-1):

if abs(x - xData[i+k+1]) < 1.0e-9:

return yData[i+k+1]

else:

c1 = r[i+1] - r[i]

c2 = r[i+1] - rOld[i+1]

c3 = (x - xData[i])/(x - xData[i+k+1])

r[i] = r[i+1] + c1/(c3*(1.0 - c1/c2) - 1.0)

rOld[i+1] = r[i+1]

return r[0]

EXAMPLE 3.5
Given the data

x 0 0.6 0.8 0.95

y 0 1.3764 3.0777 12.7062

determine y(0.5) by the diagonal rational function interpolation.

Solution The plot of the data points indicates that y may have a pole at around x = 1.
Such a function is a very poor candidate for polynomial interpolation, but can be
readily represented by a rational function.

x

0.0 0.2 0.4 0.6 0.8 1.0

y

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:34 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.005

Cambridge Books Online © Cambridge University Press, 2016

113 3.2 Polynomial Interpolation

We set up our work in the format of Table 3.3. After we complete the computa-
tions, the table looks like this:

k = −1 k = 0 k = 1 k = 2 k = 3
i = 1 0 0 0 0 0.9544 1.0131
i = 2 0.6 0 1.3764 1.0784 1.0327
i = 3 0.8 0 3.0777 1.2235
i = 4 0.95 0 12.7062

Let us now look at a few sample computations. We obtain, for example, R[x3, x4] by
substituting i = 3, k = 1 into Eqs. (3.9). This yields

S = x − x3

x − x4

(
1 − R[x4] − R[x3]

R[x4] − R[x4, . . . , x3]

)
− 1

= 0.5 − 0.8
0.5 − 0.95

(
1 − 12.7062 − 3.0777

12.7062 − 0

)
− 1 = −0.83852

R[x3, x4] = R[x4] + R[x4] − R[x3]
S

= 12.7062 + 12.7062 − 3.0777
−0.83852

= 1.2235

The entry R[x2, x3, x4] is obtained with i = 2, k = 2. The result is

S = x − x2

x − x4

(
1 − R[x3, x4] − R[x2, x3]

R[x3, x4] − R[x3]

)
− 1

= 0.5 − 0.6
0.5 − 0.95

(
1 − 1.2235 − 1.0784

1.2235 − 3.0777

)
− 1 = −0.76039

R[x2, x3, x4] = R[x3, x4] + R[x3, x4] − R[x2, x3]
S

= 1.2235 + 1.2235 − 1.0784
−0.76039

= 1.0327

The interpolant at x = 0.5 based on all four data points is R[x1, x2, x3, x4] = 1.0131.

EXAMPLE 3.6
Interpolate the data shown at x increments of 0.05 and plot the results. Use both the
polynomial interpolation and the rational function interpolation.

x 0.1 0.2 0.5 0.6 0.8 1.2 1.5

y −1.5342 −1.0811 −0.4445 −0.3085 −0.0868 0.2281 0.3824

Solution

#!/usr/bin/python

example 3_6

from numpy import array,arange

from rational import *

from neville import *

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:34 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.005

Cambridge Books Online © Cambridge University Press, 2016

114 Interpolation and Curve Fitting

xData = array([0.1,0.2,0.5,0.6,0.8,1.2,1.5])

yData = array([-1.5342,-1.0811,-0.4445,-0.3085, \

-0.0868,0.2281,0.3824])

x = arange(0.1,1.55,0.05)

n = len(x)

y = zeros((n,2))

print ’ x Rational Neville’

for i in range(n):

y[i,0] = rational(xData,yData,x[i])

y[i,1] = neville(xData,yData,x[i])

print ’%4.2f %9.5f %9.5f’% (x[i],y[i,0],y[i,1])

A plot of the printed output (the printout is not shown) follows.

In this case, the rational function interpolant (solid line) is smoother and thus
superior to the polynomial interpolant (dotted line).

3.3 Interpolation with Cubic Spline

If there are more than a few data points, a cubic spline is hard to beat as a global
interpolant. It is considerably ”stiffer” than a polynomial in the sense that it has less
tendency to oscillate between data points.

The mechanical model of a cubic spline is shown in Fig. 3.6. It is a thin, elastic
beam that is attached with pins to the data points. Because the beam is unloaded
between the pins, each segment of the spline curve is a cubic polynomial – recall from
beam theory that d4y/dx4 = q/(E I), so that y(x) is a cubic since q = 0. At the pins,

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:34 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.005

Cambridge Books Online © Cambridge University Press, 2016

115 3.3 Interpolation with Cubic Spline

Elastic strip

Pins (data points)

x

y

Figure 3.6. Mechanical model of natural cubic spline.

the slope and bending moment (and hence the second derivative) are continuous.
There is no bending moment at the two end pins; consequently, the second derivative
of the spline is zero at the end points. Because these end conditions occur naturally
in the beam model, the resulting curve is known as the natural cubic spline. The pins,
that is, the data points, are called the knots of the spline.

Figure 3.7 shows a cubic spline that spans n + 1 knots. We use the notation
fi,i+1(x) for the cubic polynomial that spans the segment between knots i and i + 1.
Note that the spline is a piecewise cubic curve, put together from the n cubics
f0,1(x), f1,2(x), . . . , fn−1,n(x), all of which have different coefficients.

Denoting the second derivative of the spline at knot i by ki , continuity of second
derivatives requires that

f ′′
i−1,i (xi) = f ′′

i,i+1(xi) = ki (a)

At this stage, each k is unknown, except for

k0 = kn = 0

The starting point for computing the coefficients of fi,i+1(x) is the expression for
f ′′
i,i+1(x), which we know to be linear. Using Lagrange’s two-point interpolation, we

can write

f ′′
i,i+1(x) = ki�i (x) + ki+1�i+1(x)

x

y
0

1

i

n

i - 1 i + 1

n - 1

x x x0

1

i i + 1 xxxi - 1 nn - 1

y y
y y

y
y

i, i + 1f (x)

x

y

Figure 3.7. Cubic spline.

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:34 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.005

Cambridge Books Online © Cambridge University Press, 2016

116 Interpolation and Curve Fitting

where

�i (x) = x − xi+1

xi − xi+1
�1+1(x) = x − xi

xi+1 − xi

Therefore,

f ′′
i,i+1(x) = ki (x − xi+1) − ki+1(x − xi)

xi − xi+1
(b)

Integrating twice with respect to x, we obtain

fi,i+1(x) = ki (x − xi+1)3 − ki+1(x − xi)3

6(xi − xi+1)
+ A (x − xi+1) − B(x − xi) (c)

where A and B are constants of integration. The terms arising from the integration
would usually be written as Cx + D. By letting C = A − B and D = −A xi+1 + Bxi , we
end up with the last two terms of Eq. (c), which are more convenient to use in the
computations that follow.

Imposing the condition fi.i+1(xi) = yi , we get from Eq. (c)

ki (xi − xi+1)3

6(xi − xi+1)
+ A (xi − xi+1) = yi

Therefore,

A = yi

xi − xi+1
− ki

6
(xi − xi+1) (d)

Similarly, fi,i+1(xi+1) = yi+1 yields

B = yi+1

xi − xi+1
− ki+1

6
(xi − xi+1) (e)

Substituting Eqs. (d) and (e) into Eq. (c) results in

fi,i+1(x) = ki

6

[
(x − xi+1)3

xi − xi+1
− (x − xi+1)(xi − xi+1)

]

−ki+1

6

[
(x − xi)3

xi − xi+1
− (x − xi)(xi − xi+1)

]
(3.10)

+ yi (x − xi+1) − yi+1(x − xi)
xi − xi+1

The second derivatives ki of the spline at the interior knots are obtained from the
slope continuity conditions f ′

i−1,i (xi) = f ′
i,i+1(xi), where i = 1, 2, . . . , n − 1. After a little

algebra, this results in the simultaneous equations

ki−1(xi−1 − xi) + 2ki (xi−1 − xi+1) + ki+1(xi − xi+1)

= 6
(

yi−1 − yi

xi−1 − xi
− yi − yi+1

xi − xi+1

)
, i = 1, 2, · · · , n − 1 (3.11)

Because Eqs. (3.11) have a tridiagonal coefficient matrix, they can be solved econom-
ically with the functions in module LUdecomp3 described in Section 2.4.

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:34 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.005

Cambridge Books Online © Cambridge University Press, 2016

117 3.3 Interpolation with Cubic Spline

If the data points are evenly spaced at intervals h, then xi−1 − xi = xi − xi+1 = −h,
and Eqs. (3.11) simplify to

ki−1 + 4ki + ki+1 = 6
h2

(yi−1 − 2yi + yi+1), i = 1, 2, . . . , n − 1 (3.12)

� cubicSpline

The first stage of cubic spline interpolation is to set up Eqs. (3.11) and solve them for
the unknown ks (recall that k0 = kn = 0). This task is carried out by the function cur-

vatures. The second stage is the computation of the interpolant at x from Eq. (3.10).
This step can be repeated any number of times with different values of x using the
function evalSpline. The function findSegment embedded in evalSpline finds
the segment of the spline that contains x using the method of bisection. It returns the
segment number, that is, the value of the subscript i in Eq. (3.10).

module cubicSpline

’’’ k = curvatures(xData,yData).

Returns the curvatures of cubic spline at its knots.

y = evalSpline(xData,yData,k,x).

Evaluates cubic spline at x. The curvatures k can be

computed with the function ’curvatures’.

’’’

from numpy import zeros,ones

from LUdecomp3 import *

def curvatures(xData,yData):

n = len(xData) - 1

c = zeros(n)

d = ones(n+1)

e = zeros(n)

k = zeros(n+1)

c[0:n-1] = xData[0:n-1] - xData[1:n]

d[1:n] = 2.0*(xData[0:n-1] - xData[2:n+1])

e[1:n] = xData[1:n] - xData[2:n+1]

k[1:n] =6.0*(yData[0:n-1] - yData[1:n]) \

/(xData[0:n-1] - xData[1:n]) \

-6.0*(yData[1:n] - yData[2:n+1]) \

/(xData[1:n] - xData[2:n+1])

LUdecomp3(c,d,e)

LUsolve3(c,d,e,k)

return k

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:34 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.005

Cambridge Books Online © Cambridge University Press, 2016

118 Interpolation and Curve Fitting

def evalSpline(xData,yData,k,x):

def findSegment(xData,x):

iLeft = 0

iRight = len(xData)- 1

while 1:

if (iRight-iLeft) <= 1: return iLeft

i =(iLeft + iRight)/2

if x < xData[i]: iRight = i

else: iLeft = i

i = findSegment(xData,x)

h = xData[i] - xData[i+1]

y = ((x - xData[i+1])**3/h - (x - xData[i+1])*h)*k[i]/6.0 \

- ((x - xData[i])**3/h - (x - xData[i])*h)*k[i+1]/6.0 \

+ (yData[i]*(x - xData[i+1]) \

- yData[i+1]*(x - xData[i]))/h

return y

EXAMPLE 3.7
Use the natural cubic spline to determine y at x = 1.5. The data points are

x 1 2 3 4 5

y 0 1 0 1 0

Solution The five knots are equally spaced at h = 1. Recalling that the second deriva-
tive of a natural spline is zero at the first and last knot, we have k0 = k4 = 0. The
second derivatives at the other knots are obtained from Eq. (3.12). Using i = 1, 2, 3
results in the simultaneous equations

0 + 4k1 + k2 = 6 [0 − 2(1) + 0] = −12

k1 + 4k2 + k3 = 6 [1 − 2(0) + 1] = 12

k2 + 4k3 + 0 = 6 [0 − 2(1) + 0] = −12

The solution is k1 = k3 = −30/7, k2 = 36/7.
The point x = 1.5 lies in the segment between knots 0 and 1. The corresponding

interpolant is obtained from Eq. (3.10) by setting i = 0. With xi − xi+1 = −h = −1, we
obtain from Eq. (3.10)

f0,1(x) = −k0

6

[
(x − x1)3 − (x − x1)

]+ k1

6

[
(x − x0)3 − (x − x0)

]
− [y0(x − x1) − y1(x − x0)]

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:34 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.005

Cambridge Books Online © Cambridge University Press, 2016

119 3.3 Interpolation with Cubic Spline

Therefore,

y(1.5) = f0,1(1.5)

= 0 + 1
6

(
−30

7

) [
(1.5 − 1)3 − (1.5 − 1)

]− [0 − 1(1.5 − 1)]

= 0.7679

The plot of the interpolant, which in this case is made up of four cubic segments, is
shown in the figure.

x
1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00

y

0.00

0.20

0.40

0.60

0.80

1.00

EXAMPLE 3.8
Sometimes it is preferable to replace one or both of the end conditions of the cu-
bic spline with something other than the natural conditions. Use the end condition
f ′
0,1(0) = 0 (zero slope), rather than f ′′

0,1(0) = 0 (zero curvature), to determine the cu-
bic spline interpolant at x = 2.6, given the data points

x 0 1 2 3

y 1 1 0.5 0

Solution We must first modify Eqs. (3.12) to account for the new end condition. Set-
ting i = 0 in Eq. (3.10) and differentiating, we get

f ′
0,1(x) = k0

6

[
3

(x − x1)2

x0 − x1
− (x0 − x1)

]
− k1

6

[
3

(x − x0)2

x0 − x1
− (x0 − x1)

]
+ y0 − y1

x0 − x1

Thus, the end condition f ′
0,1(x0) = 0 yields

k0

3
(x0 − x1) + k1

6
(x0 − x1) + y0 − y1

x0 − x1
= 0

or

2k0 + k1 = −6
y0 − y1

(x0 − x1)2

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:34 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.005

Cambridge Books Online © Cambridge University Press, 2016

120 Interpolation and Curve Fitting

From the given data, we see that y0 = y1 = 1, so that the last equation becomes

2k0 + k1 = 0 (a)

The other equations in Eq. (3.12) are unchanged. Knowing that k3 = 0, they are

k0 + 4k1 + k2 = 6 [1 − 2(1) + 0.5] = −3 (b)

k1 + 4k2 = 6 [1 − 2(0.5) + 0] = 0 (c)

The solution of Eqs. (a)–(c) is k0 = 0.4615, k1 = −0.9231, k2 = 0.2308.
The interpolant can now be evaluated from Eq. (3.10). Substituting i = 2 and xi −

xi+1 = −1, we obtain

f2,3(x) = k2

6

[−(x − x3)3 + (x − x3)
]− k3

6

[−(x − x2)3 + (x − x2)
]

−y2(x − x3) + y3(x − x2)

Therefore,

y(2.6) = f2,3(2.6) = 0.2308
6

[−(−0.4)3 + (−0.4)
]− 0 − 0.5(−0.4) + 0

= 0.1871

EXAMPLE 3.9
Utilize the module cubicSpline to write a program that interpolates between given
data points with the natural cubic spline. The program must be able to evaluate the
interpolant for more than one value of x. As a test, use the data points specified in Ex-
ample 3.4 and compute the interpolant at x = 1.5 and x = 4.5 (because of symmetry,
these values should be equal).

Solution

#!/usr/bin/python

example3_9

from numpy import array,float

from cubicSpline import *

xData = array([1,2,3,4,5],dtype=float)

yData = array([0,1,0,1,0],dtype=float)

k = curvatures(xData,yData)

while 1:

try: x = eval(raw_input(’’\nx ==> ’’))

except SyntaxError: break

print ’’y =’’,evalSpline(xData,yData,k,x)

raw_input(’’Done. Press return to exit’’)

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:34 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.005

Cambridge Books Online © Cambridge University Press, 2016

121 3.3 Interpolation with Cubic Spline

Running the program produces the following result:

x ==> 1.5

y = 0.767857142857

x ==> 4.5

y = 0.767857142857

x ==>

Done. Press return to exit

PROBLEM SET 3.1

1. Given the data points

x −1.2 0.3 1.1

y −5.76 −5.61 −3.69

determine y at x = 0 using (a) Neville’s method and (b) Lagrange’s method.
2. Find the zero of y(x) from the following data:

x 0 0.5 1 1.5 2 2.5 3

y 1.8421 2.4694 2.4921 1.9047 0.8509 −0.4112 −1.5727

Use Lagrange’s interpolation over (a) three and (b) four nearest-neighbor data
points. Hint: After finishing part (a), part (b) can be computed with a relatively
small effort.

3. The function y(x) represented by the data in Problem 2 has a maximum at
x = 0.7692. Compute this maximum by Neville’s interpolation over four nearest-
neighbor data points.

4. Use Neville’s method to compute y at x = π/4 from the data points

x 0 0.5 1 1.5 2

y −1.00 1.75 4.00 5.75 7.00

5. Given the data

x 0 0.5 1 1.5 2

y −0.7854 0.6529 1.7390 2.2071 1.9425

find y at x = π/4 and at π/2. Use the method that you consider to be most con-
venient.

6. The points

x −2 1 4 −1 3 −4

y −1 2 59 4 24 −53

lie on a polynomial. Use the divided difference table of Newton’s method to de-
termine the degree of the polynomial.

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:34 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.005

Cambridge Books Online © Cambridge University Press, 2016

122 Interpolation and Curve Fitting

7. Use Newton’s method to find the polynomial that fits the following points:

x −3 2 −1 3 1

y 0 5 −4 12 0

8. Use Neville’s method to determine the equation of the quadratic that passes
through the points

x −1 1 3

y 17 −7 −15

9. The density of air ρ varies with elevation h in the following manner:

h (km) 0 3 6

ρ (kg/m3) 1.225 0.905 0.652

Express ρ(h) as a quadratic function using Lagrange’s method.
10. Determine the natural cubic spline that passes through the data points

x 0 1 2

y 0 2 1

Note that the interpolant consists of two cubics, one valid in 0 ≤ x ≤ 1, the other
in 1 ≤ x ≤ 2. Verify that these cubics have the same first and second derivatives
at x = 1.

11. Given the data points

x 1 2 3 4 5

y 13 15 12 9 13

determine the natural cubic spline interpolant at x = 3.4.
12. Compute the zero of the function y(x) from the following data:

x 0.2 0.4 0.6 0.8 1.0

y 1.150 0.855 0.377 −0.266 −1.049

Use inverse interpolation with the natural cubic spline. Hint: reorder the data so
that the values of y are in ascending order.

13. Solve Example 3.6 with a cubic spline that has constant second derivatives within
its first and last segments (the end segments are parabolic). The end conditions
for this spline are k0 = k1 and kn−1 = kn.

14. � Write a computer program for interpolation by Neville’s method. The program
must be able to compute the interpolant at several user-specified values of x. Test
the program by determining y at x = 1.1, 1.2, and 1.3 from the following data:

x −2.0 −0.1 −1.5 0.5

y 2.2796 1.0025 1.6467 1.0635

x −0.6 2.2 1.0 1.8

y 1.0920 2.6291 1.2661 1.9896

(Answer: y = 1.3262, 1.3938, 1.4639)

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:34 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.005

Cambridge Books Online © Cambridge University Press, 2016

123 3.3 Interpolation with Cubic Spline

15. � The specific heat cp of aluminum depends on temperature T as follows2:

T (◦C) −250 −200 −100 0 100 300

cp (kJ/kg·K) −0.0163 0.318 0.699 0.870 0.941 1.04

Plot the polynomial and the rational function interpolants from T = −250◦ to
500◦. Comment on the results.

16. � Using the data

x 0 0.0204 0.1055 0.241 0.582 0.712 0.981

y 0.385 1.04 1.79 2.63 4.39 4.99 5.27

plot the rational function interpolant from x = 0 to x = 1.
17. � The table shows the drag coefficient cD of a sphere as a function of the Reynolds

number Re.3 Use the natural cubic spline to find cD at Re = 5, 50, 500, and 5000.

Hint: use log–log scale.

Re 0.2 2 20 200 2000 20 000

cD 103 13.9 2.72 0.800 0.401 0.433

18. � Solve Prob. 17 using a polynomial interpolant intersecting four nearest-
neighbor data points (do not use log scale).

19. � The kinematic viscosity µk of water varies with temperature T in the following
manner:

T (◦C) 0 21.1 37.8 54.4 71.1 87.8 100

µk (10−3 m2/s) 1.79 1.13 0.696 0.519 0.338 0.321 0.296

Interpolate µk at T = 10◦, 30◦, 60◦, and 90◦C.
20. � The table shows how the relative density ρ of air varies with altitude h. Deter-

mine the relative density of air at 10.5 km.

h (km) 0 1.525 3.050 4.575 6.10 7.625 9.150

ρ 1 0.8617 0.7385 0.6292 0.5328 0.4481 0.3741

21. � The vibrational amplitude of a driveshaft is measured at various speeds. The
results are

Speed (rpm) 0 400 800 1200 1600

Amplitude (mm) 0 0.072 0.233 0.712 3.400

Use rational function interpolation to plot amplitude versus speed from 0 to 2500
rpm. From the plot, estimate the speed of the shaft at resonance.

2 Source: Z. B. Black, and J. G. Hartley, Thermodynamics (Harper & Row, 1985).
3 Source: F. Kreith, Principles of Heat Transfer (Harper & Row, 1973).

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:34 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.005

Cambridge Books Online © Cambridge University Press, 2016

124 Interpolation and Curve Fitting

3.4 Least-Squares Fit

Overview

If the data are obtained from experiments, these typically contain a significant
amount of random noise due to measurement errors. The task of curve fitting is to
find a smooth curve that fits the data points “on the average.” This curve should have
a simple form (e.g., a low-order polynomial), so as to not reproduce the noise.

Let

f (x) = f (x; a0, a1, . . . , am)

be the function that is to be fitted to the n + 1 data points (xi , yi), i = 0, 1, . . . , n. The
notation implies that we have a function of x that contains m + 1 variable parameters
a0, a1, . . . , am, where m < n. The form of f (x) is determined beforehand, usually from
the theory associated with the experiment from which the data are obtained. The
only means of adjusting the fit are the parameters. For example, if the data represent
the displacements yi of an overdamped mass–spring system at time ti , the theory
suggests the choice f (t) = a0te−a1t . Thus, curve fitting consists of two steps: choosing
the form of f (x), followed by computation of the parameters that produce the best fit
to the data.

This brings us to the question: What is meant by “best” fit? If the noise is confined
to the y-coordinate, the most commonly used measure is the least-squares fit, which
minimizes the function

S(a0, a1, . . . , am) =
n∑

i=0

[
yi − f (xi)

]2
(3.13)

with respect to each a j . Therefore, the optimal values of the parameters are given by
the solution of the equations

∂S
∂ak

= 0, k = 0, 1, . . . , m (3.14)

The terms ri = yi − f (xi) in Eq. (3.13) are called residuals; they represent the discrep-
ancy between the data points and the fitting function at xi . The function S to be min-
imized is thus the sum of the squares of the residuals. Equations (3.14) are generally
nonlinear in a j and may thus be difficult to solve. Often the fitting function is chosen
as a linear combination of specified functions fj (x):

f (x) = a0 f0(x) + a1 f1(x) + · · · + am fm(x)

in which case Eqs. (3.14) are linear. If the fitting function is a polynomial, we have
f0(x) = 1, f1(x) = x, f2(x) = x2, and so on.

The spread of the data about the fitting curve is quantified by the standard devi-
ation, defined as

σ =
√

S
n − m

(3.15)

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:34 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.005

Cambridge Books Online © Cambridge University Press, 2016

125 3.4 Least-Squares Fit

Note that if n = m, we have interpolation, not curve fitting. In that case both the nu-
merator and the denominator in Eq. (3.15) are zero, so that σ is indeterminate.

Fitting a Straight Line

Fitting a straight line

f (x) = a + bx (3.16)

to data is also known as linear regression. In this case, the function to be minimized
is

S(a , b) =
n∑

i=0

[
yi − f (xi)

]2 =
n∑

i=0

(
yi − a − bxi

)2

Equations (3.14) now become

∂S
∂a

=
n∑

i=0

−2(yi − a − bxi) = 2

[
a (n + 1) + b

n∑
i=0

xi −
n∑

i=0

yi

]
= 0

∂S
∂b

=
n∑

i=0

−2(yi − a − bxi)xi = 2

(
a

n∑
i=0

xi + b
n∑

i=0

x2
i −

n∑
i=0

xi yi

)
= 0

Dividing both equations by 2 (n + 1) and rearranging terms, we get

a + x̄b = ȳ x̄a +
(

1
n + 1

n∑
i=0

x2
i

)
b = 1

n + 1

n∑
i=0

xi yi

where

x̄ = 1
n + 1

n∑
i=0

xi ȳ = 1
n + 1

n∑
i=0

yi (3.17)

are the mean values of the x and y data. The solution for the parameters is

a = ȳ
∑

x2
i − x̄

∑
xi yi∑

x2
i − nx̄2

b =
∑

xi yi − x̄
∑

yi∑
x2

i − nx̄2
(3.18)

These expressions are susceptible to roundoff errors (the two terms in each numera-
tor as well as in each denominator can be roughly equal). It is better to compute the
parameters from

b =
∑

yi (xi − x̄)∑
xi (xi − x̄)

a = ȳ − x̄b (3.19)

which are equivalent to Eqs. (3.18), but much less affected by rounding off.

Fitting Linear Forms

Consider the least-squares fit of the linear form

f (x) = a0 f0(x) + a1 f1(x) + . . . + am fm(x) =
m∑

j=0

a j fj (x) (3.20)

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:34 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.005

Cambridge Books Online © Cambridge University Press, 2016

126 Interpolation and Curve Fitting

where each fj (x) is a predetermined function of x, called a basis function. Substitu-
tion in Eq. (3.13) yields

S =
n∑

i=0

⎡
⎣yi −

m∑
j=0

a j fj (xi)

⎤
⎦

2

Thus, Eqs. (3.14) are

∂S
∂ak

= −2

⎧⎨
⎩

n∑
i=0

⎡
⎣yi −

m∑
j=0

a j fj (xi)

⎤
⎦ fk (xi)

⎫⎬
⎭ = 0, k = 0, 1, . . . , m

Dropping the constant (−2) and interchanging the order of summation, we get

m∑
j=0

[
n∑

i=0

fj (xi)fk (xi)

]
a j =

n∑
i=0

fk (xi)yi , k = 0, 1, . . . , m

In matrix notation, these equations are

Aa = b (3.21a)

where

A kj =
n∑

i=0

fj (xi)fk (xi) bk =
n∑

i=0

fk (xi)yi (3.21b)

Equations (3.21a), known as the normal equations of the least-squares fit, can be
solved with the methods discussed in Chapter 2. Note that the coefficient matrix is
symmetric, that is, A kj = A j k .

Polynomial Fit

A commonly used linear form is a polynomial. If the degree of the polynomial is m,
we have f (x) =∑m

j=0 a j x j . Here the basis functions are

fj (x) = x j (j = 0, 1, . . . , m) (3.22)

so that Eqs. (3.21b) become

A kj =
n∑

i=0

x j+k
i bk =

n∑
i=0

xk
i yi

or

A =

⎡
⎢⎢⎢⎢⎣

n
∑

xi
∑

x2
i . . .

∑
xm

i∑
xi

∑
x2

i

∑
x3

i . . .
∑

xm+1
i

...
...

...
. . .

...∑
xm−1

i

∑
xm

i

∑
xm+1

i . . .
∑

x2m
i

⎤
⎥⎥⎥⎥⎦ b =

⎡
⎢⎢⎢⎢⎣

∑
yi∑
xi yi

...∑
xm

i yi

⎤
⎥⎥⎥⎥⎦ (3.23)

where
∑

stands for
∑n

i=0. The normal equations become progressively ill condi-
tioned with increasing m. Fortunately, this is of little practical consequence, because
only low-order polynomials are useful in curve fitting. Polynomials of high order are
not recommended, because they tend to reproduce the noise inherent in the data.

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:34 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.005

Cambridge Books Online © Cambridge University Press, 2016

127 3.4 Least-Squares Fit

� polyFit

The function polyFit in this module sets up and solves the normal equations
for the coefficients of a polynomial of degree m. It returns the coefficients of the
polynomial. To facilitate computations, the terms n,

∑
xi ,
∑

x2
i , . . . ,

∑
x2m

i that
make up the coefficient matrix in Eq. (3.23) are first stored in the vector s and
then inserted into A. The normal equations are then solved by Gauss elimina-
tion with pivoting. Following the solution, the standard deviation σ can be com-
puted with the function stdDev. The polynomial evaluation in stdDev is carried
out by the embedded function evalPoly – see Section 4.7 for an explanation of the
algorithm.

module polyFit

’’’ c = polyFit(xData,yData,m).

Returns coefficients of the polynomial

p(x) = c[0] + c[1]x + c[2]xˆ2 +...+ c[m]xˆm

that fits the specified data in the least

squares sense.

sigma = stdDev(c,xData,yData).

Computes the std. deviation between p(x)

and the data.

’’’

from numpy import zeros

from math import sqrt

from gaussPivot import *

def polyFit(xData,yData,m):

a = zeros((m+1,m+1))

b = zeros(m+1)

s = zeros(2*m+1)

for i in range(len(xData)):

temp = yData[i]

for j in range(m+1):

b[j] = b[j] + temp

temp = temp*xData[i]

temp = 1.0

for j in range(2*m+1):

s[j] = s[j] + temp

temp = temp*xData[i]

for i in range(m+1):

for j in range(m+1):

a[i,j] = s[i+j]

return gaussPivot(a,b)

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:34 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.005

Cambridge Books Online © Cambridge University Press, 2016

128 Interpolation and Curve Fitting

def stdDev(c,xData,yData):

def evalPoly(c,x):

m = len(c) - 1

p = c[m]

for j in range(m):

p = p*x + c[m-j-1]

return p

n = len(xData) - 1

m = len(c) - 1

sigma = 0.0

for i in range(n+1):

p = evalPoly(c,xData[i])

sigma = sigma + (yData[i] - p)**2

sigma = sqrt(sigma/(n - m))

return sigma

Weighting of Data

There are occasions when our confidence in the accuracy of data varies from point to
point. For example, the instrument taking the measurements may be more sensitive
in a certain range of data. Sometimes the data represent the results of several exper-
iments, each carried out under different conditions. Under these circumstances, we
may want to assign a confidence factor, or weight, to each data point and minimize
the sum of the squares of the weighted residuals ri = Wi

[
yi − f (xi)

]
, where Wi are the

weights. Hence, the function to be minimized is

S(a0, a1, . . . , am) =
n∑

i=0

W2
i

[
yi − f (xi)

]2
(3.24)

This procedure forces the fitting function f (x) closer to the data points that have
higher weights.

Weighted Linear Regression
If the fitting function is the straight line f (x) = a + bx, Eq. (3.24) becomes

S(a , b) =
n∑

i=0

W2
i (yi − a − bxi)2 (3.25)

The conditions for minimizing S are

∂S
∂a

= −2
n∑

i=0

W2
i (yi − a − bxi) = 0

∂S
∂b

= −2
n∑

i=0

W2
i (yi − a − bxi)xi = 0

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:34 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.005

Cambridge Books Online © Cambridge University Press, 2016

129 3.4 Least-Squares Fit

or

a
n∑

i=0

W2
i + b

n∑
i=0

W2
i xi =

n∑
i=0

W2
i yi (3.26a)

a
n∑

i=0

W2
i xi + b

n∑
i=0

W2
i x2

i =
n∑

i=0

W2
i xi yi (3.26b)

Dividing Eq. (3.26a) by
∑

W2
i and introducing the weighted averages

x̂ =
∑

W2
i xi∑

W2
i

ŷ =
∑

W2
i yi∑

W2
i

(3.27)

we obtain

a = ŷ − bx̂ (3.28a)

Substituting into Eq. (3.26b) and solving for b yields, after some algebra,

b =
∑

W2
i yi (xi − x̂)∑

W2
i xi (xi − x̂)

(3.28b)

Note that Eqs. (3.28) are quite similar to Eqs. (3.19) for unweighted data.

Fitting Exponential Functions
A special application of weighted linear regression arises in fitting various exponen-
tial functions to data. Consider as an example the fitting function

f (x) = aebx

Normally, the least-squares fit would lead to equations that are nonlinear in a and b.
But if we fit ln y rather than y , the problem is transformed to linear regression: fit the
function

F (x) = ln f (x) = ln a + bx

to the data points (xi , ln yi), i = 0, 1, . . . , n. This simplification comes at a price: the
least-squares fit to the logarithm of the data is not quite the same as the least-squares
fit to the original data. The residuals of the logarithmic fit are

Ri = ln yi − F (xi) = ln yi − (ln a + bxi
)

(3.29a)

whereas the residuals used in fitting the original data are

ri = yi − f (xi) = yi − aebxi (3.29b)

This discrepancy can be largely eliminated by weighting the logarithmic fit. From
Eq. (3.29b) we obtain ln(ri − yi) = ln(aebxi) = ln a + bxi , so that Eq. (3.29a) can be
written as

Ri = ln yi − ln(ri − yi) = ln
(

1 − ri

yi

)

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:34 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.005

Cambridge Books Online © Cambridge University Press, 2016

130 Interpolation and Curve Fitting

If the residuals ri are sufficiently small (ri << yi), we can use the approximation
ln(1 − ri/yi) ≈ ri/yi , so that

Ri ≈ ri/yi

We can now see that by minimizing
∑

R2
i , we have inadvertently introduced the

weights 1/yi . This effect can be negated if we apply the weights Wi = yi when fitting
F (x) to (ln yi , xi). That is, minimizing

S =
n∑

i=0

y2
i R2

i (3.30)

is a good approximation to minimizing
∑

r 2
i .

Other examples that also benefit from the weights Wi = yi are given in Table 3.4.

f (x) F (x) Data to be fitted by F (x)

axebx ln
[

f (x)/x
] = ln a + bx

[
xi , ln(yi/xi)

]
axb ln f (x) = ln a + b ln(x)

(
ln xi , ln yi

)
Table 3.4

EXAMPLE 3.10
Fit a straight line to the data shown and compute the standard deviation.

x 0.0 1.0 2.0 2.5 3.0

y 2.9 3.7 4.1 4.4 5.0

Solution The averages of the data are

x̄ = 1
5

∑
xi = 0.0 + 1.0 + 2.0 + 2.5 + 3.0

5
= 1.7

ȳ = 1
5

∑
yi = 2.9 + 3.7 + 4.1 + 4.4 + 5.0

5
= 4. 02

The intercept a and slope b of the interpolant can now be determined from Eq. (3.19):

b =
∑

yi (xi − x̄)∑
xi (xi − x̄)

= 2.9(−1.7) + 3.7(−0.7) + 4.1(0.3) + 4.4(0.8) + 5.0(1.3)
0.0(−1.7) + 1.0(−0.7) + 2.0(0.3) + 2.5(0.8) + 3.0(1.3)

= 3. 73
5. 8

= 0. 6431

a = ȳ − x̄b = 4.02 − 1.7(0.6431) = 2. 927

Therefore, the regression line is f (x) = 2.927 + 0.6431x, which is shown in the figure
together with the data points.

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:34 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.005

Cambridge Books Online © Cambridge University Press, 2016

131 3.4 Least-Squares Fit

x
0.00 0.50 1.00 1.50 2.00 2.50 3.00

y

2.50

3.00

3.50

4.00

4.50

5.00

We start the evaluation of the standard deviation by computing the residuals:

x 0.000 1.000 2.000 2.500 3.000

y 2.900 3.700 4.100 4.400 5.000

f (x) 2.927 3.570 4.213 4.535 4.856

y − f (x) −0.027 0.130 −0.113 −0.135 0.144

The sum of the squares of the residuals is

S =
∑[

yi − f (xi)
]2

= (−0.027)2 + (0.130)2 + (−0.113)2 + (−0.135)2 + (0.144)2 = 0.06936

so that the standard deviation in Eq. (3.15) becomes

σ =
√

S
5 − 2

=
√

0.06936
3

= 0.1520

EXAMPLE 3.11
Determine the parameters a and b so that f (x) = aebx fits the following data in the
least-squares sense.

x 1.2 2.8 4.3 5.4 6.8 7.9

y 7.5 16.1 38.9 67.0 146.6 266.2

Use two different methods: (1) fit ln yi and (2) fit ln yi with weights Wi = yi . Compute
the standard deviation in each case.

Solution of Part (1) The problem is to fit the function ln(aebx) = ln a + bx to the data

x 1.2 2.8 4.3 5.4 6.8 7.9

z = ln y 2.015 2.779 3.661 4.205 4.988 5.584

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:34 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.005

Cambridge Books Online © Cambridge University Press, 2016

132 Interpolation and Curve Fitting

We are now dealing with linear regression, where the parameters to be found are
A = ln a and b. Following the steps in Example 3.8, we get (skipping some of the arith-
metic details)

x̄ = 1
6

∑
xi = 4. 733 z̄ = 1

6

∑
zi = 3. 872

b =
∑

zi (xi − x̄)∑
xi (xi − x̄)

= 16.716
31.153

= 0. 5366 A = z̄ − x̄b = 1. 3323

Therefore, a = eA = 3. 790 and the fitting function becomes f (x) = 3.790e0.5366. The
plots of f (x) and the data points are shown in the figure.

x
1 2 3 4 5 6 7 8

y

0

50

100

150

200

250

300

Here is the computation of standard deviation:

x 1.20 2.80 4.30 5.40 6.80 7.90

y 7.50 16.10 38.90 67.00 146.60 266.20

f (x) 7.21 17.02 38.07 68.69 145.60 262.72

y − f (x) 0.29 −0.92 0.83 −1.69 1.00 3.48

S =
∑[

yi − f (xi)
]2 = 17.59

σ =
√

S
6 − 2

= 2.10

As pointed out before, this is an approximate solution of the stated problem, be-
cause we did not fit yi , but ln yi . Judging by the plot, the fit seems to be quite good.

Solution of Part (2) We again fit ln(aebx) = ln a + bx to z = ln y , but this time the
weights Wi = yi are used. From Eqs. (3.27) the weighted averages of the data are

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:34 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.005

Cambridge Books Online © Cambridge University Press, 2016

133 3.4 Least-Squares Fit

(recall that we fit z = ln y)

x̂ =
∑

y2
i xi∑
y2

i

= 737.5 × 103

98.67 × 103
= 7.474

ẑ =
∑

y2
i zi∑
y2

i

= 528.2 × 103

98.67 × 103
= 5.353

and Eqs. (3.28) yield for the parameters

b =
∑

y2
i zi (xi − x̂)∑

y2
i xi (xi − x̂)

= 35.39 × 103

65.05 × 103
= 0.5440

ln a = ẑ − bx̂ = 5.353 − 0.5440(7.474) = 1. 287

Therefore,

a = eln a = e1.287 = 3. 622

so that the fitting function is f (x) = 3.622e0.5440x . As expected, this result is somewhat
different from that obtained in Part (1).

The computations of the residuals and the standard deviation are as follows:

x 1.20 2.80 4.30 5.40 6.80 7.90

y 7.50 16.10 38.90 67.00 146.60 266.20

f (x) 6.96 16.61 37.56 68.33 146.33 266.20

y − f (x) 0.54 −0.51 1.34 −1.33 0.267 0.00

S =
∑[

yi − f (xi)
]2 = 4.186

σ =
√

S
6 − 2

= 1.023

Observe that the residuals and standard deviation are smaller than those in Part (1),
indicating a better fit, as expected.

It can be shown that fitting yi directly (which involves the solution of a transcen-
dental equation) results in f (x) = 3.614e0.5442. The corresponding standard deviation
is σ = 1.022, which is very close to the result in Part (2).

EXAMPLE 3.12
Write a program that fits a polynomial of arbitrary degree m to the data points shown
in the table. Use the program to determine m that best fits these data in the least-
squares sense.

x −0.04 0.93 1.95 2.90 3.83 5.00

y −8.66 −6.44 −4.36 −3.27 −0.88 0.87

x 5.98 7.05 8.21 9.08 10.09

y 3.31 4.63 6.19 7.40 8.85

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:34 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.005

Cambridge Books Online © Cambridge University Press, 2016

134 Interpolation and Curve Fitting

Solution The program shown below prompts for m. Execution is terminated by en-
tering an invalid character (e.g., the “return” character).

#!/usr/bin/python

example3_12

from numpy import array

from polyFit import *

xData = array([-0.04,0.93,1.95,2.90,3.83,5.0, \

5.98,7.05,8.21,9.08,10.09])

yData = array([-8.66,-6.44,-4.36,-3.27,-0.88,0.87, \

3.31,4.63,6.19,7.4,8.85])

while 1:

try:

m = eval(raw_input(’’\nDegree of polynomial ==> ’’))

coeff = polyFit(xData,yData,m)

print ’’Coefficients are:\n’’,coeff

print ’’Std. deviation =’’,stdDev(coeff,xData,yData)

except SyntaxError: break

raw_input(’’Finished. Press return to exit’’)

The results are:

Degree of polynomial ==> 1

Coefficients are:

[-7.94533287 1.72860425]

Std. deviation = 0.511278836737

Degree of polynomial ==> 2

Coefficients are:

[-8.57005662 2.15121691 -0.04197119]

Std. deviation = 0.310992072855

Degree of polynomial ==> 3

Coefficients are:

[-8.46603423e+00 1.98104441e+00 2.88447008e-03 -2.98524686e-03]

Std. deviation = 0.319481791568

Degree of polynomial ==> 4

Coefficients are:

[-8.45673473e+00 1.94596071e+00 2.06138060e-02

-5.82026909e-03 1.41151619e-04]

Std. deviation = 0.344858410479

Degree of polynomial ==>

Finished. Press return to exit

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:34 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.005

Cambridge Books Online © Cambridge University Press, 2016

135 3.4 Least-Squares Fit

Because the quadratic f (x) = −8.5700 + 2.1512x − 0.041971x2 produces the
smallest standard deviation, it can be considered as the “best” fit to the data. But
be warned – the standard deviation is not a reliable measure of the goodness-of-fit.
It is always a good idea to plot the data points and f (x) before final determination is
made. The plot of our data indicates that the quadratic (solid line) is indeed a reason-
able choice for the fitting function.

x
-2.0 0.0 2.0 4.0 6.0 8.0 10.0 12.0

y

-10.0

-5.0

0.0

5.0

10.0

PROBLEM SET 3.2

Instructions Plot the data points and the fitting function whenever appropriate.

1. Show that the straight line obtained by least-squares fit of unweighted data al-
ways passes through the point (x̄, ȳ).

2. Use linear regression to find the line that fits the data

x −1.0 −0.5 0 0.5 1.0

y −1.00 −0.55 0.00 0.45 1.00

and determine the standard deviation.
3. Three tensile tests were carried out on an aluminum bar. In each test the strain

was measured at the same values of stress. The results were

Stress (MPa) 34.5 69.0 103.5 138.0

Strain (Test 1) 0.46 0.95 1.48 1.93

Strain (Test 2) 0.34 1.02 1.51 2.09

Strain (Test 3) 0.73 1.10 1.62 2.12

where the units of strain are mm/m. Use linear regression to estimate the mod-
ulus of elasticity of the bar (modulus of elasticity = stress/strain).

4. Solve Problem 3 assuming that the third test was performed on an inferior ma-
chine, so that its results carry only half the weight of the other two tests.

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:34 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.005

Cambridge Books Online © Cambridge University Press, 2016

136 Interpolation and Curve Fitting

5. � Fit a straight line to the following data and compute the standard deviation.

x 0 0.5 1 1.5 2 2.5

y 3.076 2.810 2.588 2.297 1.981 1.912

x 3 3.5 4 4.5 5

y 1.653 1.478 1.399 1.018 0.794

6. � The table displays the mass M and average fuel consumption φ of motor vehi-
cles manufactured by Ford and Honda in 2008. Fit a straight line φ = a + bM to
the data and compute the standard deviation.

Model M (kg) φ (km/liter)

Focus 1198 11.90

Crown Victoria 1715 6.80

Expedition 2530 5.53

Explorer 2014 6.38

F-150 2136 5.53

Fusion 1492 8.50

Taurus 1652 7.65

Fit 1168 13.60

Accord 1492 9.78

CR-V 1602 8.93

Civic 1192 11.90

Ridgeline 2045 6.38

7. � The relative density ρ of air was measured at various altitudes h. The results
were:

h (km) 0 1.525 3.050 4.575 6.10 7.625 9.150

ρ 1 0.8617 0.7385 0.6292 0.5328 0.4481 0.3741

Use a quadratic least-squares fit to determine the relative air density at h =
10.5 km. (This problem was solved by interpolation in Problem 20, Problem
Set 3.1.)

8. � The kinematic viscosity µk of water varies with temperature T as shown in the
table. Determine the cubic that best fits the data, and use it to compute µk at
T = 10◦, 30◦, 60◦, and 90◦C. (This problem was solved in Problem 19, Problem
Set 3.1, by interpolation.)

T (◦C) 0 21.1 37.8 54.4 71.1 87.8 100

µk (10−3 m2/s) 1.79 1.13 0.696 0.519 0.338 0.321 0.296

9. � Fit a straight line and a quadratic to the data

x 1.0 2.5 3.5 4.0 1.1 1.8 2.2 3.7

y 6.008 15.722 27.130 33.772 5.257 9.549 11.098 28.828

Which is a better fit?

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:34 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.005

Cambridge Books Online © Cambridge University Press, 2016

137 3.4 Least-Squares Fit

10. � The table displays thermal efficiencies of some early steam engines.4 Deter-
mine the polynomial that provides the best fit to the data and use it to predict
the thermal efficiency in the year 2000.

Year Efficiency (%) Type

1718 0.5 Newcomen

1767 0.8 Smeaton

1774 1.4 Smeaton

1775 2.7 Watt

1792 4.5 Watt

1816 7.5 Woolf compound

1828 12.0 Improved Cornish

1834 17.0 Improved Cornish

1878 17.2 Corliss compound

1906 23.0 Triple expansion

11. � The table shows the variation of relative thermal conductivity k of sodium with
temperature T . Find the quadratic that fits the data in the least-squares sense.

T (◦C) 79 190 357 524 690

k 1.00 0.932 0.839 0.759 0.693

12. Let f (x) = axb be the least-squares fit of the data (xi , yi), i = 0, 1, . . . , n, and let
F (x) = ln a + b ln x be the least-squares fit of (ln xi , ln yi) – see Table 3.3. Prove
that Ri ≈ ri/yi , where the residuals are ri = yi − f (xi) and Ri = ln yi − F (xi). As-
sume that ri << yi .

13. Determine a and b for which f (x) = a sin(πx/2) + b cos(πx/2) fits the following
data in the least-squares sense.

x −0.5 −0.19 0.02 0.20 0.35 0.50

y −3.558 −2.874 −1.995 −1.040 −0.068 0.677

14. Determine a and b so that f (x) = axb fits the following data in the least-squares
sense.

x 0.5 1.0 1.5 2.0 2.5

y 0.49 1.60 3.36 6.44 10.16

15. Fit the function f (x) = axebx to the data and compute the standard deviation.

x 0.5 1.0 1.5 2.0 2.5

y 0.541 0.398 0.232 0.106 0.052

4 Source: C. Singer, E. J. Holmyard, A. R. Hall, and T. H. Williams, A History of Technology (Oxford
University Press, 1958).

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:34 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.005

Cambridge Books Online © Cambridge University Press, 2016

138 Interpolation and Curve Fitting

16. � The intensity of radiation of a radioactive substance was measured at half-year
intervals. The results were:

t (years) 0 0.5 1 1.5 2 2.5

γ 1.000 0.994 0.990 0.985 0.979 0.977

t (years) 3 3.5 4 4.5 5 5.5

γ 0.972 0.969 0.967 0.960 0.956 0.952

where γ is the relative intensity of radiation. Knowing that radioactivity decays
exponentially with time, γ (t) = ae−bt , estimate the radioactive half-life of the
substance.

17. Linear regression can be extended to data that depend on two or more variables
(called multiple linear regression). If the dependent variable is z and indepen-
dent variables are x and y , the data to be fitted has the form

x1 y1 z1

x2 y2 z2

x3 y3 z3

...
...

...

xn yn zn

Instead of a straight line, the fitting function now represents a plane:

f (x, y) = a + bx + cy

Show that the normal equations for the coefficients are⎡
⎢⎣ n �xi �yi

�xi �x2
i �xi yi

�yi �xi yi �y2
i

⎤
⎥⎦
⎡
⎢⎣a

b
c

⎤
⎥⎦ =

⎡
⎢⎣ �zi

�xi zi

�yi zi

⎤
⎥⎦

18. Use the multiple linear regression explained in Problem 17 to determine the
function

f (x, y) = a + bx + cy

that fits the data

x y z

0 0 1.42

0 1 1.85

1 0 0.78

2 0 0.18

2 1 0.60

2 2 1.05

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:34 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.005

Cambridge Books Online © Cambridge University Press, 2016

