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7 Initial Value Problems

Solve y′ = F(x, y) with the auxiliary conditions y(a) = α

7.1 Introduction

The general form of a first-order differential equation is

y ′ = f (x, y) (7.1a)

where y ′ = dy/dx and f (x, y) is a given function. The solution of this equation con-
tains an arbitrary constant (the constant of integration). To find this constant, we
must know a point on the solution curve; that is, y must be specified at some value of
x, say, at x = a . We write this auxiliary condition as

y(a) = α (7.1b)

An ordinary differential equation of order n

y (n) = f
(
x, y , y ′, . . . , y (n−1)) (7.2)

can always be transformed into n first-order equations. Using the notation

y0 = y y1 = y ′ y2 = y ′′ . . . yn−1 = y (n−1) (7.3)

the equivalent first-order equations are

y ′
0 = y1 y ′

1 = y2 y ′
2 = y3 . . . y ′

n = f (x, y0, y1, . . . , yn−1) (7.4a)

The solution now requires the knowledge of n auxiliary conditions. If these condi-
tions are specified at the same value of x, the problem is said to be an initial value
problem. Then the auxiliary conditions, called initial conditions, have the form

y0(a) = α0 y1(a) = α1 . . . yn−1(a) = αn−1 (7.4b)

If yi are specified at different values of x, the problem is called a boundary value prob-
lem.
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244 Initial Value Problems

For example,

y ′′ = −y y(0) = 1 y ′(0) = 0

is an initial value problem because both auxiliary conditions imposed on the solution
are given at x = 0. On the other hand,

y ′′ = −y y(0) = 1 y(π) = 0

is a boundary value problem because the two conditions are specified at different
values of x.

In this chapter, we consider only initial value problems. Boundary value prob-
lems, which are more difficult to solve, are discussed in the next chapter. We also
make extensive use of vector notation, which allows us to manipulate sets of first-
order equations in a concise form. For example, Eqs. (7.4) are written as

y′ = F(x, y) y(a) = α (7.5a)

where

F(x, y) =

⎡
⎢⎢⎢⎢⎣

y1

y2

...
f (x, y)

⎤
⎥⎥⎥⎥⎦ (7.5b)

A numerical solution of differential equations is essentially a table of x- and y-values
listed at discrete intervals of x.

7.2 Taylor Series Method

The Taylor series method is conceptually simple and capable of high accuracy. Its
basis is the truncated Taylor series for y about x:

y(x + h) ≈ y(x) + y′(x)h + 1
2!

y′′(x)h2 + 1
3!

y′′′(x)h3 + . . . + 1
m!

y(m)(x)hm (7.6)

Because Eq. (7.6) predicts y at x + h from the information available at x, it is also a
formula for numerical integration. The last term kept in the series determines the
order of integration. For the series in Eq. (7.6), the integration order is m.

The truncation error, due to the terms omitted from the series, is

E = 1
(m + 1)!

y(m+1)(ξ )hm+1, x < ξ < x + h

Using the finite difference approximation

y(m+1)(ξ ) ≈ y(m)(x + h) − y(m)(x)
h

we obtain the more usable form

E ≈ hm

(m + 1)!

[
y(m)(x + h) − y(m)(x)

]
(7.7)
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245 7.2 Taylor Series Method

which could be incorporated in the algorithm to monitor the error in each integration
step.

� taylor

The function taylor implements the Taylor series method of integration order 4.
It can handle any number of first-order differential equations y ′

i = fi (x, y0, y1, . . .),
i = 0, 1, . . .. The user is required to supply the function deriv that returns the 4 × n
array

D =

⎡
⎢⎢⎢⎣

(y′)T

(y′′)T

(y′′′)T

(y(4))T

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

y ′
0 y ′

1 · · · y ′
n−1

y ′′
0 y ′′

1 · · · y ′′
n−1

y ′′′
0 y ′′′

1 · · · y ′′′
n−1

y (4)
0 y (4)

1 · · · y (4)
n−1

⎤
⎥⎥⎥⎦

The function returns the arrays X and Y that contain the values of x and y at
intervals h.

## module taylor

’’’ X,Y = taylor(deriv,x,y,xStop,h).

4th-order Taylor series method for solving the initial

value problem {y}’ = {F(x,{y})}, where

{y} = {y[0],y[1],...y[n-1]}.

x,y = initial conditions

xStop = terminal value of x

h = increment of x used in integration

deriv = user-supplied function that returns the 4 x n array

[y’[0] y’[1] y’[2] ... y’[n-1]

y"[0] y"[1] y"[2] ... y"[n-1]

y"’[0] y"’[1] y"’[2] ... y"’[n-1]

y""[0] y""[1] y""[2] ... y""[n-1]]

’’’

from numpy import array

def taylor(deriv,x,y,xStop,h):

X = []

Y = []

X.append(x)

Y.append(y)

while x < xStop: # Loop over integration steps

h = min(h,xStop - x)

D = deriv(x,y) # Derivatives of y

H = 1.0

for j in range(4): # Build Taylor series

H = H*h/(j + 1)

y = y + D[j]*H # H = hˆj/j!

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:53:43 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.009

Cambridge Books Online © Cambridge University Press, 2016



246 Initial Value Problems

x = x + h

X.append(x) # Append results to

Y.append(y) # lists X and Y

return array(X),array(Y) # Convert lists into arrays

� printSoln

We use this function to print X and Y obtained from numerical integration. The
amount of data is controlled by the parameter freq. For example, if freq = 5, ev-
ery fifth integration step would be displayed. If freq = 0, only the initial and final
values will be shown.

## module printSoln

’’’ printSoln(X,Y,freq).

Prints X and Y returned from the differential

equation solvers using printput frequency ’freq’.

freq = n prints every nth step.

freq = 0 prints initial and final values only.

’’’

def printSoln(X,Y,freq):

def printHead(n):

print ’’\n x ’’,

for i in range (n):

print ’’ y[’’,i,’’] ’’,

print

def printLine(x,y,n):

print ’’%13.4e’’% x,

for i in range (n):

print ’’%13.4e’’% y[i],

print

m = len(Y)

try: n = len(Y[0])

except TypeError: n = 1

if freq == 0: freq = m

printHead(n)

for i in range(0,m,freq):

printLine(X[i],Y[i],n)

if i != m - 1: printLine(X[m - 1],Y[m - 1],n)
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247 7.2 Taylor Series Method

EXAMPLE 7.1
Given that

y ′ + 4y = x2 y(0) = 1

determine y(0.1) with the fourth-order Taylor series method using a single integra-
tion step. Also compute the estimated error from Eq. (7.7) and compare it with the
actual error. The analytical solution of the differential equation is

y = 31
32

e−4x + 1
4

x2 − 1
8

x + 1
32

Solution The Taylor series up to and including the term with h4 is

y(h) = y(0) + y ′(0)h + 1
2!

y ′′(0)h2 + 1
3!

y ′′′(0)h3 + 1
4!

y (4)(0)h4 (a)

Differentiation of the differential equation yields

y ′ = −4y + x2

y ′′ = −4y ′ + 2x = 16y − 4x2 + 2x

y ′′′ = 16y ′ − 8x + 2 = −64y + 16x2 − 8x + 2

y (4) = −64y ′ + 32x − 8 = 256y − 64x2 + 32x − 8

Thus, at x = 0 we have

y ′(0) = −4(1) = −4

y ′′(0) = 16(1) = 16

y ′′′(0) = −64(1) + 2 = −62

y (4)(0) = 256(1) − 8 = 248

With h = 0.1, Eq. (a) becomes

y(0.2) = 1 + (−4)(0.1) + 1
2!

(16)(0.1)2 + 1
3!

(−62)(0.1)3 + 1
4!

(248)(0.1)4

= 0.670700

According to Eq. (7.7), the approximate truncation error is

E = h4

5!

[
y (4)(0.1) − y (4)(0)

]
where

y (4)(0) = 248

y (4)(0.1) = 256(0.6707) − 64(0.1)2 + 32(0.1) − 8 = 166.259

Therefore,

E = (0.1)4

5!
(166.259 − 248) = −6.8 × 10−5
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248 Initial Value Problems

The analytical solution yields

y(0.1) = 31
32

e−4(0.1) + 1
4

(0.1)2 − 1
8

(0.1) + 1
32

= 0.670623

so that the actual error is 0.670623 − 0.670700 = −7.7 × 10−5.

EXAMPLE 7.2
Solve

y ′′ = −0.1y ′ − x y(0) = 0 y ′(0) = 1

from x = 0 to 2 with the Taylor series method of order 4. Use h = 0.25 and utilize the
functions taylor and printSoln.

Solution With the notation y0 = y and y1 = y ′ the equivalent first-order equations
and the initial conditions are

y′ =
[

y ′
0

y ′
1

]
=
[

y1

−0.1y1 − x

]
y(0) =

[
0
1

]

Repeated differentiation of the differential equations yields

y′′ =
[

y ′
1

−0.1y ′
1 − 1

]
=
[

−0.1y1 − x
0.01y1 + 0.1x − 1

]

y′′′ =
[

−0.1y ′
1 − 1

0.01y ′
1 + 0.1

]
=
[

0.01y1 + 0.1x − 1
−0.001y1 − 0.01x + 0.1

]

y(4) =
[

0.01y ′
1 + 0.1

−0.001y ′
1 − 0.01

]
=
[

−0.001y1 − 0.01x + 0.1
0.0001y1 + 0.001x − 0.01

]

Thus, the derivative array that has to be computed by the function deriv is

D =

⎡
⎢⎢⎢⎣

y1 −0.1y1 − x
−0.1y1 − x 0.01y1 + 0.1x − 1

0.01y1 + 0.1x − 1 −0.001y1 − 0.01x + 0.1
−0.001y1 − 0.01x + 0.1 0.0001y1 + 0.001x − 0.01

⎤
⎥⎥⎥⎦

Here is the program that performs the integration:

#!/usr/bin/python

## example7_2

from numpy import array, zeros

from printSoln import *

from taylor import *

def deriv(x,y):

D = zeros((4,2))

D[0] = [y[1] , -0.1*y[1] - x]

D[1] = [D[0,1], 0.01*y[1] + 0.1*x - 1.0]
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249 7.3 Runge–Kutta Methods

D[2] = [D[1,1], -0.001*y[1] - 0.01*x + 0.1]

D[3] = [D[2,1], 0.0001*y[1] + 0.001*x - 0.01]

return D

x = 0.0 # Start of integration

xStop = 2.0 # End of integration

y = array([0.0, 1.0]) # Initial values of {y}

h = 0.25 # Step size

freq = 1 # Printout frequency

X,Y = taylor(deriv,x,y,xStop,h)

printSoln(X,Y,freq)

raw_input("\nPress return to exit")

The results are:

x y[ 0 ] y[ 1 ]

0.0000e+000 0.0000e+000 1.0000e+000

2.5000e-001 2.4431e-001 9.4432e-001

5.0000e-001 4.6713e-001 8.2829e-001

7.5000e-001 6.5355e-001 6.5339e-001

1.0000e+000 7.8904e-001 4.2110e-001

1.2500e+000 8.5943e-001 1.3281e-001

1.5000e+000 8.5090e-001 -2.1009e-001

1.7500e+000 7.4995e-001 -6.0625e-001

2.0000e+000 5.4345e-001 -1.0543e+000

The analytical solution of the problem is

y = 100x − 5x2 + 990(e−0.1x − 1)

from which we obtain y(2) = 0.543 446, which agrees well with the numerical solu-
tion.

7.3 Runge–Kutta Methods

The main drawback of the Taylor series method is that it requires repeated differ-
entiation of the dependent variables. These expressions may become very long and
are, therefore, error-prone and tedious to compute. Moreover, there is the extra work
of coding each of the derivatives. The aim of Runge–Kutta methods is to eliminate
the need for repeated differentiation of the differential equations. Because no such
differentiation is involved in the first-order Taylor series integration formula

y(x + h) = y(x) + y′(x)h = y(x) + F(x, y)h (7.8)
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250 Initial Value Problems

( )y' x

x
x x + h

Euler's formula

Error

x,y( )f

Figure 7.1. Graphical representation
of Euler formula.

it can also be considered as the first-order Runge–Kutta method; it is also called
Euler’s method. Because of excessive truncation error, this method is rarely used in
practice.

Let us now take a look at the graphical interpretation of Euler’s equation. For
the sake of simplicity, we assume that there is a single dependent variable y , so that
the differential equation is y ′ = f (x, y). The change in the solution y between x and
x + h is

y(x + h) − y(h) =
∫ x+h

x
y ′ dx =

∫ x+h

x
f (x, y)dx

which is the area of the panel under the y ′(x) plot, shown in Fig. 7.1. Euler’s formula
approximates this area by the area of the cross-hatched rectangle. The area between
the rectangle and the plot represents the truncation error. Clearly, the truncation er-
ror is proportional to the slope of the plot, that is, proportional to y ′′(x).

Second-Order Runge–Kutta Method

To arrive at the second-order method, we assume an integration formula of the form

y(x + h) = y(x) + c0F(x, y)h + c1F
[
x + ph, y + qhF(x, y)

]
h (a)

and attempt to find the parameters c0, c1, p, and q by matching Eq. (a) to the Taylor
series

y(x + h) = y(x) + y′(x)h + 1
2!

y′′(x)h2 + O(h3)

= y(x) + F(x, y)h + 1
2

F′(x, y)h2 + O(h3) (b)

Noting that

F′(x, y) = ∂F
∂x

+
n−1∑
i=0

∂F
∂yi

y ′
i = ∂F

∂x
+

n−1∑
i=0

∂F
∂yi

Fi (x, y)

where n is the number of first-order equations, Eq. (b) can be written as

y(x + h) = y(x) + F(x, y)h + 1
2

(
∂F
∂x

+
n−1∑
i=0

∂F
∂yi

Fi (x, y)

)
h2 + O(h3) (c)
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251 7.3 Runge–Kutta Methods

Returning to Eq. (a), we can rewrite the last term by applying Taylor series in
several variables:

F
[
x + ph, y + qhF(x, y)

] = F(x, y) + ∂F
∂x

ph + qh
n−1∑
i=1

∂F
∂yi

Fi (x, y) + O(h2)

so that Eq. (a) becomes

y(x + h) = y(x) + (c0 + c1) F(x, y)h + c1

[
∂F
∂x

ph + qh
n−1∑
i=1

∂F
∂yi

Fi (x, y)

]
h + O(h3) (d)

Comparing Eqs. (c) and (d), we find that they are identical if

c0 + c1 = 1 c1 p = 1
2

c1q = 1
2

(e)

Because Eqs. (e) represent three equations in four unknown parameters, we can as-
sign any value to one of the parameters. Some of the popular choices and the names
associated with the resulting formulas are:

c0 = 0 c1 = 1 p = 1/2 q = 1/2 Modified Euler’s method
c0 = 1/2 c1 = 1/2 p = 1 q = 1 Heun’s method
c0 = 1/3 c1 = 2/3 p = 3/4 q = 3/4 Ralston’s method

All these formulas are classified as second-order Runge–Kutta methods, with no for-
mula having numerical superiority over the others. Choosing the modified Euler’s
method, substitution of the corresponding parameters into Eq. (a) yields

y(x + h) = y(x) + F
[

x + h
2

, y + h
2

F(x, y)
]

h (f)

This integration formula can be conveniently evaluated by the following sequence of
operations:

K0 = hF(x, y)

K1 = hF
(

x + h
2

, y + 1
2

K0

)
(7.9)

y(x + h) = y(x) + K1

Second-order methods are not popular in computer applications. Most program-
mers prefer integration formulas of order 4, which achieve a given accuracy with less
computational effort.

Figure 7.2 displays the graphical interpretation of the modified Euler formula for
a single differential equation y ′ = f (x, y). The first of Eqs. (7.9) yields an estimate of
y at the midpoint of the panel by Euler’s formula: y(x + h/2) = y(x) + f (x, y)h/2 =
y(x) + K0/2. The second equation then approximates the area of the panel by the
area K1 of the cross-hatched rectangle. The error here is proportional to the curvature
y ′′′ of the plot.
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( )y' x

xx x + h

0( )/2h/2h y +K /2x + h/2,
x,y( )f

f

Figure 7.2. Graphical representation of modified Euler formula.

Fourth-Order Runge–Kutta Method

The fourth-order Runge–Kutta method is obtained from the Taylor series along the
same lines as the second-order method. Because the derivation is rather long and not
very instructive, we skip it. The final form of the integration formula again depends
on the choice of the parameters, that is, there is no unique Runge–Kutta fourth-
order formula. The most popular version, which is known simply as the Runge–Kutta
method, entails the following sequence of operations:

K0 = hF(x, y)

K1 = hF
(

x + h
2

, y + K0

2

)

K2 = hF
(

x + h
2

, y + K1

2

)
(7.10)

K3 = hF(x + h, y + K2)

y(x + h) = y(x) + 1
6

(K0 + 2K1 + 2K2 + K3)

The main drawback of this method is that is does not lend itself to an estimate of
the truncation error. Therefore, we must guess the integration step size h, or deter-
mine it by trial and error. In contrast, adaptive methods can evaluate the truncation
error in each integration step and adjust the value of h accordingly (but at a higher
cost of computation). One such adaptive method is introduced in the next section.

� run kut4

The function integrate in this module implements the Runge–Kutta method of or-
der 4. The user must provide integrate with the function F(x,y) that defines the
first-order differential equations y′ = F(x, y).

## module run_kut4

’’’ X,Y = integrate(F,x,y,xStop,h).

4th-order Runge--Kutta method for solving the

initial value problem {y}’ = {F(x,{y})}, where

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:53:43 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.009

Cambridge Books Online © Cambridge University Press, 2016



253 7.3 Runge–Kutta Methods

{y} = {y[0],y[1],...y[n-1]}.

x,y = initial conditions.

xStop = terminal value of x.

h = increment of x used in integration.

F = user-supplied function that returns the

array F(x,y) = {y’[0],y’[1],...,y’[n-1]}.

’’’

from numpy import array

def integrate(F,x,y,xStop,h):

def run_kut4(F,x,y,h):

# Computes increment of y from Eqs. (7.10)

K0 = h*F(x,y)

K1 = h*F(x + h/2.0, y + K0/2.0)

K2 = h*F(x + h/2.0, y + K1/2.0)

K3 = h*F(x + h, y + K2)

return (K0 + 2.0*K1 + 2.0*K2 + K3)/6.0

X = []

Y = []

X.append(x)

Y.append(y)

while x < xStop:

h = min(h,xStop - x)

y = y + run_kut4(F,x,y,h)

x = x + h

X.append(x)

Y.append(y)

return array(X),array(Y)

EXAMPLE 7.3
Use the second-order Runge–Kutta method to integrate

y ′ = sin y y(0) = 1

from x = 0 to 0.5 in steps of h = 0.1. Keep four decimal places in the computations.

Solution In this problem, we have

F (x, y) = sin y

so that the integration formulas in Eqs. (7.9) are

K0 = hF (x, y) = 0.1 sin y

K1 = hF
(

x + h
2

, y + 1
2

K0

)
= 0.1 sin

(
y + 1

2
K0

)

y(x + h) = y(x) + K1
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254 Initial Value Problems

We note that y(0) = 1; the integration then proceeds as follows:

K0 = 0.1 sin 1.0000 = 0.0841

K1 = 0.1 sin
(

1.0000 + 0.0841
2

)
= 0.0863

y(0.1) = 1.0 + 0.0863 = 1.0863

K0 = 0.1 sin 1.0863 = 0.0885

K1 = 0.1 sin
(

1.0863 + 0.0885
2

)
= 0.0905

y(0.2) = 1.0863 + 0.0905 = 1.1768

and so on. A summary of the computations is shown in the following table.

x y K0 K1

0.0 1.0000 0.0841 0.0863

0.1 1.0863 0.0885 0.0905

0.2 1.1768 0.0923 0.0940

0.3 1.2708 0.0955 0.0968

0.4 1.3676 0.0979 0.0988

0.5 1.4664

The exact solution can be shown to be

x(y) = ln(csc y − cot y) + 0.604582

which yields x(1.4664) = 0.5000. Therefore, up to this point the numerical solution is
accurate to four decimal places. However, it is unlikely that this precision would be
maintained if we were to continue the integration. Because the errors (due to trun-
cation and roundoff) tend to accumulate, longer integration ranges require better
integration formulas and more significant figures in the computations.

EXAMPLE 7.4
Solve

y ′′ = −0.1y ′ − x y(0) = 0 y ′(0) = 1

from x = 0 to 2 in increments of h = 0.25 with the Runge–Kutta method of order 4.
(This problem was solved by the Taylor series method in Example 7.2.)

Solution Letting y0 = y and y1 = y ′, the equivalent first-order equations are

y′ = F(x, y) =
[

y ′
0

y ′
1

]
=
[

y1

−0.1y1 − x

]

Comparing the function F(x,y)here with deriv(x,y)in Example 7.2, we note that it
is much simpler to input the differential equations in the Runge–Kutta method than
in the Taylor series method.
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255 7.3 Runge–Kutta Methods

#!/usr/bin/python

## example7_4

from numpy import array,zeros

from printSoln import *

from run_kut4 import *

def F(x,y):

F = zeros(2)

F[0] = y[1]

F[1] = -0.1*y[1] - x

return F

x = 0.0 # Start of integration

xStop = 2.0 # End of integration

y = array([0.0, 1.0]) # Initial values of {y}

h = 0.25 # Step size

freq = 1 # Printout frequency

X,Y = integrate(F,x,y,xStop,h)

printSoln(X,Y,freq)

raw_input("Press return to exit")

The output from the fourth-order method follows. The results are the same
as those obtained by the Taylor series method in Example 7.2. This was expected,
because both methods are of the same order.

x y[ 0 ] y[ 1 ]

0.0000e+000 0.0000e+000 1.0000e+000

2.5000e-001 2.4431e-001 9.4432e-001

5.0000e-001 4.6713e-001 8.2829e-001

7.5000e-001 6.5355e-001 6.5339e-001

1.0000e+000 7.8904e-001 4.2110e-001

1.2500e+000 8.5943e-001 1.3281e-001

1.5000e+000 8.5090e-001 -2.1009e-001

1.7500e+000 7.4995e-001 -6.0625e-001

2.0000e+000 5.4345e-001 -1.0543e+000

EXAMPLE 7.5
Use the fourth-order Runge–Kutta method to integrate

y ′ = 3y − 4e−x y(0) = 1

from x = 0 to 10 in steps of h = 0.1. Compare the result with the analytical solution
y = e−x .
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256 Initial Value Problems

Solution We used the program shown here. Recalling that run kut4 assumes y to be
an array, we specified the initial value as y = array([1.0]) rather than y = 1.0.

#!/usr/bin/python

## example7_5

from numpy import zeros,array

from run_kut4 import *

from printSoln import *

from math import exp

def F(x,y):

F = zeros(1)

F[0] = 3.0*y[0] - 4.0*exp(-x)

return F

x = 0.0 # Start of integration

xStop = 10.0 # End of integration

y = array([1.0]) # Initial values of {y}

h = 0.1 # Step size

freq = 10 # Printout frequency

X,Y = integrate(F,x,y,xStop,h)

printSoln(X,Y,freq)

raw_input("\nPress return to exit")

Running the program produced the following output:

x y[ 0 ]

0.0000e+000 1.0000e+000

2.0000e+000 1.3250e-001

4.0000e+000 -1.1237e+000

6.0000e+000 -4.6056e+002

8.0000e+000 -1.8575e+005

1.0000e+001 -7.4912e+007

It is clear that something went wrong. According to the analytical solution, y
should approach zero with increasing x, but the output shows the opposite trend:
After an initial decrease, the magnitude of y increases dramatically. The explanation
is found by taking a closer look at the analytical solution. The general solution of the
given differential equation is

y = Ce3x + e−x

which can be verified by substitution. The initial condition y(0) = 1 yields C = 0, so
that the solution to the problem is indeed y = e−x .

The cause of trouble in the numerical solution is the dormant term Ce3x . Sup-
pose that the initial condition contains a small error ε, so that we have y(0) = 1 + ε.
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257 7.3 Runge–Kutta Methods

This changes the analytical solution to

y = εe3x + e−x

We now see that the term containing the error ε becomes dominant as x is increased.
Because errors inherent in the numerical solution have the same effect as small
changes in initial conditions, we conclude that our numerical solution is the victim
of numerical instability due to sensitivity of the solution to initial conditions. The
lesson is: Do not blindly trust the results of numerical integration.

EXAMPLE 7.6

R r ve 0
θ

A spacecraft is launched at the altitude H = 772 km above the sea level with the
speed v0 = 6700 m/s in the direction shown. The differential equations describing
the motion of the spacecraft are

r̈ = r θ̇
2 − G Me

r 2
θ̈ = −2ṙ θ̇

r

where r and θ are the polar coordinates of the spacecraft. The constants involved in
the motion are

G = 6.672 × 10−11 m3kg−1s−2 = universal gravitational constant

Me = 5.9742 × 1024 kg = mass of the earth

Re = 6378.14 km = radius of the earth at sea level

(1) Derive the first-order differential equations and the initial conditions of the form
ẏ = F(t , y), y(0) = b. (2) Use the fourth-order Runge–Kutta method to integrate the
equations from the time of launch until the spacecraft hits the earth. Determine θ at
the impact site.

Solution of Part (1) We have

G Me = (6.672 × 10−11) (5.9742 × 1024) = 3.9860 × 1014 m3s−2

Letting

y =

⎡
⎢⎢⎢⎣

y0

y1

y2

y3

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

r
ṙ
θ

θ̇

⎤
⎥⎥⎥⎦

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:53:43 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.009

Cambridge Books Online © Cambridge University Press, 2016



258 Initial Value Problems

the equivalent first-order equations become

ẏ =

⎡
⎢⎢⎢⎣

ẏ0

ẏ1

ẏ2

ẏ3

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

y1

y0y2
3 − 3.9860 × 1014/y2

0

y3

−2y1y3/y0

⎤
⎥⎥⎥⎦

and the initial conditions are

r (0) = Re + H = (6378.14 + 772) × 103 = 7. 15014 × 106 m

ṙ (0) = 0

θ(0) = 0

θ̇(0) = v0/r (0) = (6700) /(7.15014 × 106) = 0.937045 × 10−3 rad/s

Therefore,

y(0) =

⎡
⎢⎢⎢⎣

7. 15014 × 106

0
0
0.937045 × 10−3

⎤
⎥⎥⎥⎦

Solution of Part (2) The program used for numerical integration is listed here.
Note that the independent variable t is denoted by x. The period of integration
xStop (the time when the spacecraft hits) was estimated from a previous run of the
program.

#!/usr/bin/python

## example7_6

from numpy import zeros,array

from run_kut4 import *

from printSoln import *

def F(x,y):

F = zeros(4)

F[0] = y[1]

F[1] = y[0]*(y[3]**2) - 3.9860e14/(y[0]**2)

F[2] = y[3]

F[3] = -2.0*y[1]*y[3]/y[0]

return F

x = 0.0

xStop = 1200.0

y = array([7.15014e6, 0.0, 0.0, 0.937045e-3])

h = 50.0

freq = 2
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259 7.3 Runge–Kutta Methods

X,Y = integrate(F,x,y,xStop,h)

printSoln(X,Y,freq)

raw_input("\nPress return to exit")

Here is the output:

x y[ 0 ] y[ 1 ] y[ 2 ] y[ 3 ]

0.0000e+000 7.1501e+006 0.0000e+000 0.0000e+000 9.3704e-004

1.0000e+002 7.1426e+006 -1.5173e+002 9.3771e-002 9.3904e-004

2.0000e+002 7.1198e+006 -3.0276e+002 1.8794e-001 9.4504e-004

3.0000e+002 7.0820e+006 -4.5236e+002 2.8292e-001 9.5515e-004

4.0000e+002 7.0294e+006 -5.9973e+002 3.7911e-001 9.6951e-004

5.0000e+002 6.9622e+006 -7.4393e+002 4.7697e-001 9.8832e-004

6.0000e+002 6.8808e+006 -8.8389e+002 5.7693e-001 1.0118e-003

7.0000e+002 6.7856e+006 -1.0183e+003 6.7950e-001 1.0404e-003

8.0000e+002 6.6773e+006 -1.1456e+003 7.8520e-001 1.0744e-003

9.0000e+002 6.5568e+006 -1.2639e+003 8.9459e-001 1.1143e-003

1.0000e+003 6.4250e+006 -1.3708e+003 1.0083e+000 1.1605e-003

1.1000e+003 6.2831e+006 -1.4634e+003 1.1269e+000 1.2135e-003

1.2000e+003 6.1329e+006 -1.5384e+003 1.2512e+000 1.2737e-003

The spacecraft hits the earth when r equals Re = 6.378 14 × 106 m. This occurs
between t = 1000 and 1100 s. A more accurate value of t can be obtained by polyno-
mial interpolation. If no great precision is needed, linear interpolation will do. Letting
1000 + �t be the time of impact, we can write

r (1000 + �t ) = Re

Expanding r in a two-term Taylor series, we get

r (1000) + r ′(1000)�t = Re

6.4250 × 106 + (−1.3708 × 103) x = 6378.14 × 103

from which

�t = 34.184 s

The coordinate θ of the impact site can be estimated in a similar manner. Again,
using two terms of the Taylor series, we have

θ(1000 + �t ) = θ(1000) + θ ′(1000)�t

= 1.0083 + (1.1605 × 10−3) (34.184)

= 1.0480 rad = 60.00◦
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PROBLEM SET 7.1

1. Given

y ′ + 4y = x2 y(0) = 1

compute y(0.1) using two steps of the Taylor series method of order 2. Compare
the result with Example 7.1.

2. Solve Prob. 1 with one step of the Runge–Kutta method of order (a) 2 and (b) 4.
3. Integrate

y ′ = sin y y(0) = 1

from x = 0 to 0.5 with the second-order Taylor series method using h = 0.1.
Compare the result with Example 7.3.

4. Verify that the problem

y ′ = y1/3 y(0) = 0

has two solutions: y = 0 and y = (2x/3)3/2. Which of the solutions would be re-
produced by numerical integration if the initial condition is set at (a) y = 0 and
(b) y = 10−16? Verify your conclusions by integrating with any numerical method.

5. Convert the following differential equations into first-order equations of the
form y′ = F(x, y):

(a) ln y ′ + y = sin x
(b) y ′′y − xy ′ − 2y2 = 0
(c) y (4) − 4y ′′√1 − y2 = 0

(d)
(
y

′′)2 = ∣∣32y ′x − y2
∣∣

6. In the following sets of coupled differential equations, t is the independent vari-
able. Convert these equations into first-order equations of the form ẏ = F(t , y):

(a) ÿ = x − 2y ẍ = y − x

(b) ÿ = −y
(
ẏ2 + ẋ2

)1/4
ẍ = −x

(
ẏ2 + ẋ

)1/4 − 32
(c) ÿ2 + t sin y = 4ẋ xẍ + t cos y = 4ẏ

7. � The differential equation for the motion of a simple pendulum is

d2θ

dt 2
= − g

L
sin θ

where

θ = angular displacement from the vertical

g = gravitational acceleration

L = length of the pendulum

With the transformation τ = t
√

g/L, the equation becomes

d2θ

dτ 2
= − sin θ
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261 7.3 Runge–Kutta Methods

Use numerical integration to determine the period of the pendulum if the am-
plitude is θ0 = 1 rad. Note that for small amplitudes (sin θ ≈ θ) the period is
2π

√
L/g.

8. � A skydiver of mass m in a vertical free fall experiences an aerodynamic drag
force FD = cDẏ2, where y is measured downward from the start of the fall. The
differential equation describing the fall is

ÿ = g − cD

m
ẏ2

Determine the time of a 5000-m fall. Use g = 9.80665 m/s2, CD = 0.2028 kg/m,
and m = 80 kg.

9. �

P(t)
m

k

y

The spring–mass system is at rest when the force P(t ) is applied, where

P(t ) =
{

10t N when t < 2 s
20 N when t ≥ 2 s

The differential equation of the ensuing motion is

ÿ = P(t )
m

− k
m

y

Determine the maximum displacement of the mass. Use m = 2.5 kg and k = 75
N/m.

10. �

y

Water level

The conical float is free to slide on a vertical rod. When the float is disturbed
from its equilibrium position, it undergoes oscillating motion described by the
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differential equation

ÿ = g
(
1 − ay3)

where a = 16 m−3 (determined by the density and dimensions of the float) and
g = 9.80665 m/s2. If the float is raised to the position y = 0.1 m and released,
determine the period and the amplitude of the oscillations.

11. �

y(t)

L

m

θ

The pendulum is suspended from a sliding collar. The system is at rest when the
oscillating motion y(t ) = Y sin ωt is imposed on the collar, starting at t = 0. The
differential equation describing the motion of the pendulum is

θ̈ = − g
L

sin θ + ω2

L
Y cos θ sin ωt

Plot θ versus t from t = 0 to 10 s and determine the largest θ during this period.
Use g = 9.80665 m/s2, L = 1.0 m, Y = 0.25 m, and ω = 2.5 rad/s.

12. �

2 m

r

θ(t)

The system consisting of a sliding mass and a guide rod is at rest with the mass
at r = 0.75 m. At time t = 0, a motor is turned on that imposes the motion
θ(t ) = (π/12) cos πt on the rod. The differential equation describing the result-
ing motion of the slider is

r̈ =
(

π2

12

)2

r sin2 πt − g sin
( π

12
cos πt

)
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263 7.3 Runge–Kutta Methods

Determine the time when the slider reaches the tip of the rod. Use g = 9.80665
m/s2.

13. �

30o

0v

m R

y

x

A ball of mass m = 0.25 kg is launched with the velocity v0 = 50 m/s in the di-
rection shown. Assuming that the aerodynamic drag force acting on the ball is
FD = CDv3/2, the differential equations describing the motion are

ẍ = −CD

m
ẋv1/2 ÿ = −CD

m
ẏv1/2 − g

where v =
√

ẋ2 + ẏ2. Determine the time of flight and the range R. Use CD = 0.03
kg/(m·s)1/2 and g = 9.80665 m/s2.

14. � The differential equation describing the angular position θ of a mechanical
arm is

θ̈ = a(b − θ) − θ θ̇
2

1 + θ2

where a = 100 s−2 and b = 15. If θ(0) = 2π and θ̇(0) = 0, compute θ and θ̇ when
t = 0.5 s.

15. �

θ r

m

L = undeformed length
k = stiffness 

The mass m is suspended from an elastic cord with an extensional stiffness k and
undeformed length L. If the mass is released from rest at θ = 60◦ with the cord
unstretched, find the length r of the cord when the position θ = 0 is reached for
the first time. The differential equations describing the motion are

r̈ = r θ̇
2 + g cos θ − k

m
(r − L)

θ̈ = −2ṙ θ̇ − g sin θ

r

Use g = 9.80665 m/s2, k = 40 N/m, L = 0.5 m, and m = 0.25 kg.

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:53:43 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.009

Cambridge Books Online © Cambridge University Press, 2016



264 Initial Value Problems

16. � Solve Prob. 15 if the mass is released from the position θ = 60◦ with the cord
stretched by 0.075 m.

17. �

m
k

y

µ

Consider the mass–spring system where dry friction is present between the block
and the horizontal surface. The frictional force has a constant magnitude µmg
(µ is the coefficient of friction) and always opposes the motion. The differential
equation for the motion of the block can be expressed as

ÿ = − k
m

y − µg
ẏ
|ẏ |

where y is measured from the position where the spring is unstretched. If
the block is released from rest at y = y0, verify by numerical integration that
the next positive peak value of y is y0 − 4µmg/k (this relationship can be de-
rived analytically). Use k = 3000 N/m, m = 6 kg, µ = 0.5, g = 9.80665 m/s2, and
y0 = 0.1 m.

18. � Integrate the following problems from x = 0 to 20 and plot y versus x:

(a) y ′′ + 0.5(y2 − 1) + y = 0 y(0) = 1 y ′(0) = 0
(b) y ′′ = y cos 2x y(0) = 0 y ′(0) = 1

These differential equations arise in nonlinear vibration analysis.
19. � The solution of the problem

y ′′ + 1
x

y ′ +
(

1 − 1
x2

)
y y(0) = 0 y ′(0) = 1

is the Bessel function J1(x). Use numerical integration to compute J1(5) and
compare the result with −0.327 579, the value listed in mathematical tables. Hint:
to avoid singularity at x = 0, start the integration at x = 10−12.

20. � Consider the initial value problem

y ′′ = 16.81y y(0) = 1.0 y ′(0) = −4.1

(a) Derive the analytical solution. (b) Do you anticipate difficulties in numerical
solution of this problem? (c) Try numerical integration from x = 0 to 8 to see if
your concerns were justified.
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21. �

R R

C

2R

i

i

1

2

i1

i2
L

E(t)

Kirchoff’s equations for the circuit shown are

L
di1

dt
+ Ri1 + 2R(i1 + i2) = E(t ) (a)

q2

C
+ Ri2 + 2R(i2 + i1) = E(t ) (b)

where i1 and i2 are the loop currents, and q2 is the charge of the condenser. Dif-
ferentiating Eq. (b) and substituting the charge–current relationship dq2/dt = i2,
we get

di1

dt
= −3Ri1 − 2Ri2 + E(t )

L
(c)

di2

dt
= −2

3
di1

dt
− i2

3RC
+ 1

3R
d E
dt

(d)

We could substitute di1/dt from Eq. (c) into Eq. (d), so that the latter would as-
sume the usual form di2/dt = f (t , i1, i2), but it is more convenient to leave the
equations as they are. Assuming that the voltage source is turned on at time t = 0,
plot the loop currents ii and i2 from t = 0 to 0.05 s. Use E(t ) = 240 sin(120πt ) V,
R = 1.0 �, L = 0.2 × 10−3 H, and C = 3.5 × 10−3 F.

22. �

L L

R R

C CE
i

i

1

2i1

i2

The constant voltage source of the circuit shown is turned on at t = 0, causing
transient currents i1 and i2 in the two loops that last about 0.05 s. Plot these
currents from t = 0 to 0.05 s, using the following data: E = 9 V, R = 0.25 �,
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L = 1.2 × 10−3 H, and C = 5 × 10−3 F. Kirchoff’s equations for the two loops are

L
di1

dt
+ Ri1 + q1 − q2

C
= E

L
di2

dt
+ Ri2 + q2 − q1

C
+ q2

C
= 0

Two additional equations are the current–charge relationships

dq1

dt
= i1

dq2

dt
= i2

23. Write a function for the second-order Runge–Kutta method of integration. You
may use runKut4 as a model. Use the function to solve the problem in Example
7.4. Compare your results with those in Example 7.4.

7.4 Stability and Stiffness

Loosely speaking, a method of numerical integration is said to be stable if the effects
of local errors do not accumulate catastrophically, that is, if the global error remains
bounded. If the method is unstable, the global error will increase exponentially, even-
tually causing numerical overflow. Stability has nothing to do with accuracy; in fact,
an inaccurate method can be very stable.

Stability is determined by three factors: the differential equations, the method of
solution, and the value of the increment h. Unfortunately, it is not easy to determine
stability beforehand, unless the differential equation is linear.

Stability of Euler’s Method

As a simple illustration of stability, consider the linear problem

y ′ = −λy y(0) = β (7.11)

where λ is a positive constant. The analytical solution of this problem is

y(x) = βe−λx

Let us now investigate what happens when we attempt to solve Eq. (7.11) numer-
ically with Euler’s formula

y(x + h) = y(x) + hy ′(x) (7.12)

Substituting y ′(x) = −λy(x), we get

y(x + h) = (1 − λh)y(x)

If
∣∣1 − λh

∣∣ > 1, the method is clearly unstable because |y | increases in every integra-
tion step. Thus, Euler’s method is stable only if

∣∣1 − λh
∣∣ ≤ 1, or

h ≤ 2/λ (7.13)
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267 7.4 Stability and Stiffness

The results can be extended to a system of n differential equations of the form

y′ = −�y (7.14)

where � is a constant matrix with the positive eigenvalues λi , i = 1, 2, . . . , n. It can
be shown that Euler’s method of integration is stable if

h < 2/λmax (7.15)

where λmax is the largest eigenvalue of �.

Stiffness

An initial value problem is called stiff if some terms in the solution vector y(x) vary
much more rapidly with x than others. Stiffness can be easily predicted for the differ-
ential equations y′ = −�y with constant coefficient matrix �. The solution of these
equations is y(x) =∑i Ci vi exp(−λi x), where λi are the eigenvalues of � and vi are
the corresponding eigenvectors. It is evident that the problem is stiff if there is a large
disparity in the magnitudes of the positive eigenvalues.

Numerical integration of stiff equations requires special care. The step size h
needed for stability is determined by the largest eigenvalue λmax, even if the terms
exp(−λmaxx) in the solution decay very rapidly and become insignificant as we move
away from the origin.

For example, consider the differential equation1

y ′′ + 1001y ′ + 1000y = 0 (7.16)

Using y0 = y and y1 = y ′, the equivalent first-order equations are

y′ =
[

y1

−1000y0 − 1001y1

]

In this case,

� =
[

0 −1
1000 1001

]

The eigenvalues of � are the roots of

|� − λI| =
∣∣∣∣∣ −λ −1
1000 1001 − λ

∣∣∣∣∣ = 0

Expanding the determinant we get

−λ(1001 − λ) + 1000 = 0

which has the solutions λ1 = 1 and λ2 = 1000. These equations are clearly stiff. Ac-
cording to Eq. (7.15), we would need h ≤ 2/λ2 = 0.002 for Euler’s method to be

1 This example is taken from C. E. Pearson, Numerical Methods in Engineering and Science (van Nos-
trand and Reinhold, 1986).
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268 Initial Value Problems

stable. The Runge–Kutta method would have approximately the same limitation on
the step size.

When the problem is very stiff, the usual methods of solution, such as the Runge–
Kutta formulas, become impractical because of the very small h required for stabil-
ity. These problems are best solved with methods that are specially designed for stiff
equations. Stiff problem solvers, which are outside the scope of this text, have much
better stability characteristics; some of them are even unconditionally stable. How-
ever, the higher degree of stability comes at a cost – the general rule is that stability
can be improved only by reducing the order of the method (and thus increasing the
truncation error).

EXAMPLE 7.7
(1) Show that the problem

y ′′ = −19
4

y − 10y ′ y(0) = −9 y ′(0) = 0

is moderately stiff and estimate hmax, the largest value of h for which the Runge–
Kutta method would be stable. (2) Confirm the estimate by computing y(10) with
h ≈ hmax/2 and h ≈ 2hmax.

Solution of Part (1) With the notation y = y0 and y ′ = y1, the equivalent first-order
differential equations are

y′ =
⎡
⎣ y1

−19
4

y0 − 10y1

⎤
⎦ = −�

[
y0

y1

]

where

� =
⎡
⎣ 0 −1

19
4

10

⎤
⎦

The eigenvalues of � are given by

|� − λI| =
∣∣∣∣∣∣
−λ −1
19
4

10 − λ

∣∣∣∣∣∣ = 0

which yields λ1 = 1/2 and λ2 = 19/2. Because λ2 is quite a bit larger than λ1, the equa-
tions are moderately stiff.

Solution of Part (2) An estimate for the upper limit of the stable range of h can be
obtained from Eq. (7.15):

hmax = 2
λmax

= 2
19/2

= 0.2153

Although this formula is strictly valid for Euler’s method, it is usually not too far off
for higher-order integration formulas.
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269 7.5 Adaptive Runge–Kutta Method

Here are the results from the Runge–Kutta method with h = 0.1 (by specifying
freq = 0 in printSoln, only the initial and final values were printed):

x y[ 0 ] y[ 1 ]

0.0000e+000 -9.0000e+000 0.0000e+000

1.0000e+001 -6.4011e-002 3.2005e-002

The analytical solution is

y(x) = −19
2

e−x/2 + 1
2

e−19x/2

yielding y(10) = −0.0640 11, which agrees with the value obtained numerically.
With h = 0.5 we encountered instability, as expected:

x y[ 0 ] y[ 1 ]

0.0000e+000 -9.0000e+000 0.0000e+000

1.0000e+001 2.7030e+020 -2.5678e+021

7.5 Adaptive Runge–Kutta Method

Determination of a suitable step size h can be a major headache in numerical inte-
gration. If h is too large, the truncation error may be unacceptable; if h is too small,
we are squandering computational resources. Moreover, a constant step size may
not be appropriate for the entire range of integration. For example, if the solution
curve starts off with rapid changes before becoming smooth (as in a stiff problem),
we should use a small h at the beginning and increase it as we reach the smooth re-
gion. This is where adaptive methods come in. They estimate the truncation error at
each integration step and automatically adjust the step size to keep the error within
prescribed limits.

The adaptive Runge–Kutta methods use embedded integration formulas. These
formulas come in pairs: One formula has the integration order m, the other one is of
order m + 1. The idea is to use both formulas to advance the solution from x to x + h.
Denoting the results by ym(x + h) and ym+1(x + h), an estimate of the truncation error
in the formula of order m is obtained from

E(h) = ym+1(x + h) − ym(x + h) (7.17)

What makes the embedded formulas attractive is that they share the points where
F(x, y) is evaluated. This means that once ym(x + h) has been computed, relatively
little additional effort is required to calculate ym+1(x + h).
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i Ai Bij Ci Di

0 − − − − − − 37
378

2825
27 648

1
1
5

1
5

− − − − 0 0

2
3

10
3

40
9

40
− − − 250

621
18 575
48 384

3
3
5

3
10

− 9
10

6
5

− − 125
594

13 525
55 296

4 1 −11
54

5
2

−70
27

35
27

− 0
277

14 336

5
7
8

1631
55296

175
512

575
13824

44275
110592

253
4096

512
1771

1
4

Table 7.1 Cash-Karp coefficients for Runge–Kutta-Fehlberg formulas

Here are the Runge–Kutta embedded formulas of orders 5 and 4 that were origi-
nally derived by Fehlberg; hence, they are known as Runge–Kutta-Fehlberg formulas:

K0 = hF(x, y)

Ki = hF

⎛
⎝x + Ai h, y +

i−1∑
j=0

Bij K j

⎞
⎠ , i = 1, 2, . . . , 5 (7.18)

y5(x + h) = y(x) +
5∑

i=0

Ci Ki (fifth-order formula) (7.19a)

y4(x + h) = y(x) +
5∑

i=0

Di Ki (fourth-order formula) (7.19b)

The coefficients appearing in these formulas are not unique. Table 6.1 gives the coef-
ficients proposed by Cash and Karp,2 which are claimed to be an improvement over
Fehlberg’s original values.

The solution is advanced with the fifth-order formula in Eq. (7.19a). The fourth-
order formula is used only implicitly in estimating the truncation error

E(h) = y5(x + h) − y4(x + h) =
5∑

i=0

(Ci − Di )Ki (7.20)

Because Eq. (7.20) actually applies to the fourth-order formula, it tends to over-
estimate the error in the fifth-order formula.

2 J. R. Cash and A. H. Carp, ACM Transactions on Mathematical Software, Vol. 16 (1990), p. 201.
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271 7.5 Adaptive Runge–Kutta Method

Note that E(h) is a vector, its components Ei (h) representing the errors in the
dependent variables yi . This brings up the question: what is the error measure e(h)
that we wish to control? There is no single choice that works well in all problems. If
we want to control the largest component of E(h), the error measure would be

e(h) = max
i

∣∣Ei (h)
∣∣ (7.21)

We could also control some gross measure of the error, such as the root-mean-square
error defined by

Ē(h) =
√√√√ 1

n

n−1∑
i=0

E 2
i (h) (7.22)

where n is the number of first-order equations. Then we would use

e(h) = Ē(h) (7.23)

for the error measure. Because the root-mean-square error is easier to handle, we
adopt it for our program.

Error control is achieved by adjusting the increment h so that the per-step error
e(h) is approximately equal to a prescribed tolerance ε. Noting that the truncation
error in the fourth-order formula is O(h5), we conclude that

e(h1)
e(h2)

≈
(

h1

h2

)5

(a)

Let us suppose that we performed an integration step with h1 that resulted in the
error e(h1). The step size h2 that we should have used can now be obtained from Eq.
(a) by setting e(h2) = ε:

h2 = h1

[
e(h1)

ε

]1/5

(b)

If h2 ≥ h1, we could repeat the integration step with h2, but since the error was below
the tolerance, that would be a waste of a perfectly good result. So we accept the cur-
rent step and try h2 in the next step. On the other hand, if h2 < h1, we must scrap the
current step and repeat it with h2. As Eq. (b) is only an approximation, it is prudent to
incorporate a small margin of safety. In our program, we use the formula

h2 = 0.9h1

[
e(h1)

ε

]1/5

(7.24)

Recall that e(h) applies to a single integration step, that is, it is a measure of the
local truncation error. The all-important global truncation error is due to the accu-
mulation of the local errors. What should ε be set at in order to achieve a global error
tolerance εglobal? Because e(h) is a conservative estimate of the actual error, setting
ε = εglobal will usually be adequate. If the number integration steps is large, it is ad-
visable to decrease ε accordingly.

Is there any reason to use the nonadaptive methods at all? Usually the answer
is no; however, there are special cases where adaptive methods break down. For
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272 Initial Value Problems

example, adaptive methods generally do not work if F(x, y) contains discontinuities.
Because the error behaves erratically at the point of discontinuity, the program can
get stuck in an infinite loop trying to find the appropriate value of h. We would also
use a nonadaptive method if the output is to have evenly spaced values of x.

� run kut5

This module is compatible with run kut4 listed in the previous article. Any program
that calls integrate can choose between the adaptive and the nonadaptive meth-
ods by importing either run kut5 or run kut4. The input argument h is the trial
value of the increment for the first integration step.

## module run_kut5

’’’ X,Y = integrate(F,x,y,xStop,h,tol=1.0e-6).

Adaptive Runge--Kutta method for solving the

initial value problem {y}’ = {F(x,{y})}, where

{y} = {y[0],y[1],...y[n-1]}.

x,y = initial conditions

xStop = terminal value of x

h = initial increment of x used in integration

tol = per-step error tolerance

F = user-supplied function that returns the

array F(x,y) = {y’[0],y’[1],...,y’[n-1]}.

’’’

from numpy import array,sum,zeros

from math import sqrt

def integrate(F,x,y,xStop,h,tol=1.0e-6):

def run_kut5(F,x,y,h):

# Runge--Kutta-Fehlberg formulas

C = array([37./378, 0., 250./621, 125./594, \

0., 512./1771])

D = array([2825./27648, 0., 18575./48384, \

13525./55296, 277./14336, 1./4])

n = len(y)

K = zeros((6,n))

K[0] = h*F(x,y)

K[1] = h*F(x + 1./5*h, y + 1./5*K[0])

K[2] = h*F(x + 3./10*h, y + 3./40*K[0] + 9./40*K[1])

K[3] = h*F(x + 3./5*h, y + 3./10*K[0]- 9./10*K[1] \

+ 6./5*K[2])
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273 7.5 Adaptive Runge–Kutta Method

K[4] = h*F(x + h, y - 11./54*K[0] + 5./2*K[1] \

- 70./27*K[2] + 35./27*K[3])

K[5] = h*F(x + 7./8*h, y + 1631./55296*K[0] \

+ 175./512*K[1] + 575./13824*K[2] \

+ 44275./110592*K[3] + 253./4096*K[4])

# Initialize arrays {dy} and {E}

E = zeros(n)

dy = zeros(n)

# Compute solution increment {dy} and per-step error {E}

for i in range(6):

dy = dy + C[i]*K[i]

E = E + (C[i] - D[i])*K[i]

# Compute RMS error e

e = sqrt(sum(E**2)/n)

return dy,e

X = []

Y = []

X.append(x)

Y.append(y)

stopper = 0 # Integration stopper(0 = off, 1 = on)

for i in range(10000):

dy,e = run_kut5(F,x,y,h)

# Accept integration step if error e is within tolerance

if e <= tol:

y = y + dy

x = x + h

X.append(x)

Y.append(y)

# Stop if end of integration range is reached

if stopper == 1: break

# Compute next step size from Eq. (7.24)

if e != 0.0:

hNext = 0.9*h*(tol/e)**0.2

else: hNext = h

# Check if next step is the last one; is so, adjust h

if (h > 0.0) == ((x + hNext) >= xStop):

hNext = xStop - x

stopper = 1

h = hNext

return array(X),array(Y)
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EXAMPLE 7.8
The aerodynamic drag force acting on a certain object in free fall can be approxi-
mated by

FD = av2e−by

where

v = velocity of the object in m/s

y = elevation of the object in meters

a = 7.45 kg/m

b = 10.53 × 10−5 m−1

The exponential term accounts for the change of air density with elevation. The dif-
ferential equation describing the fall is

mÿ = −mg + FD

where g = 9.80665 m/s2 and m = 114 kg is the mass of the object. If the object is
released at an elevation of 9 km, use the adaptive Runge–Kutta method to determine
its elevation and speed after a 10-s fall.

Solution The differential equation and the initial conditions are

ÿ = −g + a
m

ẏ2 exp(−by)

= −9.80665 + 7.45
114

ẏ2 exp(−10.53 × 10−5y)

y(0) = 9000 m ẏ(0) = 0

Letting y0 = y and y1 = ẏ , the equivalent first-order equations become

ẏ =
[

ẏ0

ẏ1

]
=
[

y1

−9.80665 + (65.351 × 10−3
)

y2
1 exp(−10.53 × 10−5y0)

]

y(0) =
[

9000 m
0

]

The driver program for run kut5 is listed next. We specified a per-step error toler-
ance of 10−2 in integrate. Considering the magnitude of y, this should be enough
for five-decimal place accuracy in the solution.

#!/usr/bin/python

## example7_8

from numpy import array,zeros

from run_kut5 import *

from printSoln import *

from math import exp
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def F(x,y):

F = zeros(2)

F[0] = y[1]

F[1] = -9.80665 + 65.351e-3 * y[1]**2 * exp(-10.53e-5*y[0])

return F

x = 0.0

xStop = 10.0

y = array([9000, 0.0])

h = 0.5

freq = 1

X,Y = integrate(F,x,y,xStop,h,1.0e-2)

printSoln(X,Y,freq)

raw_input("\nPress return to exit")

Running the program resulted in the following output:

x y[ 0 ] y[ 1 ]

0.0000e+000 9.0000e+003 0.0000e+000

5.0000e-001 8.9988e+003 -4.8043e+000

2.0584e+000 8.9821e+003 -1.5186e+001

3.4602e+000 8.9581e+003 -1.8439e+001

4.8756e+000 8.9312e+003 -1.9322e+001

6.5347e+000 8.8989e+003 -1.9533e+001

8.6276e+000 8.8580e+003 -1.9541e+001

1.0000e+001 8.8312e+003 -1.9519e+001

The first step was carried out with the prescribed trial value h = 0.5 s. Apparently
the error was well within the tolerance, so the step was accepted. Subsequent step
sizes, determined from Eq. (7.24), were considerably larger.

Inspecting the output, we see that at t = 10 s the object is moving with the speed
v = −ẏ = 19.52 m/s at an elevation of y = 8831 m.

EXAMPLE 7.9
Integrate the moderately stiff problem

y ′′ = −19
4

y − 10y ′ y(0) = −9 y ′(0) = 0

from x = 0 to 10 with the adaptive Runge–Kutta method and plot the results (this
problem also appeared in Example 7.7).

Solution Because we use an adaptive method, there is no need to worry about the
stable range of h, as we did in Example 7.7. As long as we specify a reasonable
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tolerance for the per-step error (in this case, the default value 10−6 is fine), the al-
gorithm will find the appropriate step size. Here is the program and its output:

#!/usr/bin/python

## example7_9

from numpy import array,zeros

from run_kut5 import *

from printSoln import *

def F(x,y):

F = zeros(2)

F[0] = y[1]

F[1] = -4.75*y[0] - 10.0*y[1]

return F

x = 0.0

xStop = 10.0

y = array([-9.0, 0.0])

h = 0.1

freq = 4

X,Y = integrate(F,x,y,xStop,h)

printSoln(X,Y,freq)

raw_input("\nPress return to exit")

x y[ 0 ] y[ 1 ]

0.0000e+000 -9.0000e+000 0.0000e+000

9.8941e-002 -8.8461e+000 2.6651e+000

2.1932e-001 -8.4511e+000 3.6653e+000

3.7058e-001 -7.8784e+000 3.8061e+000

5.7229e-001 -7.1338e+000 3.5473e+000

8.6922e-001 -6.1513e+000 3.0745e+000

1.4009e+000 -4.7153e+000 2.3577e+000

2.8558e+000 -2.2783e+000 1.1391e+000

4.3990e+000 -1.0531e+000 5.2656e-001

5.9545e+000 -4.8385e-001 2.4193e-001

7.5596e+000 -2.1685e-001 1.0843e-001

9.1159e+000 -9.9591e-002 4.9794e-002

1.0000e+001 -6.4010e-002 3.2005e-002

The results are in agreement with the analytical solution.
The plots of y and y ′ show every fourth integration step. Note the high density of

points near x = 0 where y ′ changes rapidly. As the y ′-curve becomes smoother, the
distance between the points increases.
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x
0.0 2.0 4.0 6.0 8.0 10.0

-10.0

-8.0

-6.0

-4.0

-2.0

0.0

2.0

4.0

y'

y

7.6 Bulirsch–Stoer Method

Midpoint Method

The midpoint formula of numerical integration of y′ = F(x, y) is

y(x + h) = y(x − h) + 2hF
[
x, y(x)

]
(7.25)

It is a second-order formula, like the modified Euler’s formula. We discuss it here
because it is the basis of the powerful Bulirsch–Stoer method, which is the technique
of choice in problems where high accuracy is required.

Figure 7.3 illustrates the midpoint formula for a single differential equation y ′ =
f (x, y). The change in y over the two panels shown is

y(x + h) − y(x − h) =
∫ x+h

x−h
y ′(x)dx

which equals the area under the y ′(x) curve. The midpoint method approximates this
area by the area 2hf (x, y) of the cross-hatched rectangle.

Consider now advancing the solution of y′(x) = F(x, y) from x = x0 to x0 + H
with the midpoint formula. We divide the interval of integration into n steps of length

x - h x x + h x

y'(x)

f(x,y)

h h

Figure 7.3. Graphical repesentation of midpoint formula.
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x0 xnn - 1xx x x1 2 3

h
x

H

Figure 7.4. Mesh used in the midpoint method.

h = H/n each, as shown in Fig. 7.4, and carry out the computations

y1 = y0 + hF0

y2 = y0 + 2hF1

y3 = y1 + 2hF2 (7.26)

...

yn = yn−2 + 2hFn−1

Here we used the notation yi = y(xi ) and Fi = F(xi , yi ). The first of Eqs. (7.26) uses
the Euler formula to “seed” the midpoint method; the other equations are midpoint
formulas. The final result is obtained by averaging yn in Eq. (7.26) and the estimate
yn ≈ yn−1 + hFn available from the Euler formula:

y(x0 + H) = 1
2

[
yn + (yn−1 + hFn

)]
(7.27)

Richardson Extrapolation

It can be shown that the error in Eq. (7.27) is

E = c1h2 + c2h4 + c3h6 + · · ·

Herein lies the great utility of the midpoint method: We can eliminate as many of the
leading error terms as we wish by Richardson extrapolation. For example, we could
compute y(x0 + H) with a certain value of h and then repeat process with h/2. De-
noting the corresponding results by g(h) and g(h/2), Richardson extrapolation – see
Eq. (5.9) – then yields the improved result

ybetter(x0 + H) = 4g(h/2) − g(h)
3

which is fourth-order accurate. Another round of integration with h/4 followed by
Richardson extrapolation get us sixth-order accuracy, and so forth. Rather than halv-
ing the interval in successive integrations, we use the sequence h/2, h/4, h/6, h/8,
h/10, . . ., which has been found to be more economical.
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279 7.6 Bulirsch–Stoer Method

The ys in Eqs. (7.26) should be viewed as temporary variables, because unlike
y(x0 + H), they cannot be refined by Richardson extrapolation.

� midpoint

The function integrate in this module combines the midpoint method with
Richardson extrapolation. The first application of the midpoint method uses two in-
tegration steps. The number of steps is increased by 2 in successive integrations, each
integration being followed by Richardson extrapolation. The procedure is stopped
when two successive solutions differ (in the root-mean-square sense) by less than a
prescribed tolerance.

## module midpoint

’’’ yStop = integrate (F,x,y,xStop,tol=1.0e-6)

Modified midpoint method for solving the

initial value problem y’ = F(x,y}.

x,y = initial conditions

xStop = terminal value of x

yStop = y(xStop)

F = user-supplied function that returns the

array F(x,y) = {y’[0],y’[1],...,y’[n-1]}.

’’’

from numpy import zeros,float,sum

from math import sqrt

def integrate(F,x,y,xStop,tol):

def midpoint(F,x,y,xStop,nSteps):

# Midpoint formulas

h = (xStop - x)/nSteps

y0 = y

y1 = y0 + h*F(x,y0)

for i in range(nSteps-1):

x = x + h

y2 = y0 + 2.0*h*F(x,y1)

y0 = y1

y1 = y2

return 0.5*(y1 + y0 + h*F(x,y2))

def richardson(r,k):

# Richardson’s extrapolation

for j in range(k-1,0,-1):

const = (k/(k - 1.0))**(2.0*(k-j))

r[j] = (const*r[j+1] - r[j])/(const - 1.0)

return
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kMax = 51

n = len(y)

r = zeros((kMax,n),dtype=float)

# Start with two integration steps

nSteps = 2

r[1] = midpoint(F,x,y,xStop,nSteps)

r_old = r[1].copy()

# Increase the number of integration points by 2

# and refine result by Richardson extrapolation

for k in range(2,kMax):

nSteps = 2*k

r[k] = midpoint(F,x,y,xStop,nSteps)

richardson(r,k)

# Compute RMS change in solution

e = sqrt(sum((r[1] - r_old)**2)/n)

# Check for convergence

if e < tol: return r[1]

r_old = r[1].copy()

print "Midpoint method did not converge"

Bulirsch–Stoer Algorithm

When used on its own, the module midpoint has a major shortcoming: the solution
at points between the initial and final values of x cannot be refined by Richardson ex-
trapolation, so that y is usable only at the last point. This deficiency is rectified in the
Bulirsch–Stoer method. The fundamental idea behind the method is simple: Apply
the midpoint method in a piecewise fashion. That is, advance the solution in stages
of length H, using the midpoint method with Richardson extrapolation to perform
the integration in each stage. The value of H can be quite large, because the preci-
sion of the result is determined by the step length h in the midpoint method, not by
H. However, if H is too large, the midpoint method may not converge. If this happens,
try a smaller value of H or a larger error tolerance.

The original Bulirsch and Stoer technique3 is a complex procedure that incorpo-
rates many refinements missing in our algorithm. However, the function bulStoer

given next retains the essential ideas of Bulirsch and Stoer.
What are the relative merits of adaptive Runge–Kutta and Bulirsch–Stoer meth-

ods? The Runge–Kutta method is more robust, having a higher tolerance for non-
smooth functions and stiff problems. The Bulirsch–Stoer algorithm (in its original
form) is used mainly in problems where high accuracy is of paramount importance.

3 J. Stoer and R. Bulirsch, Introduction to Numerical Analysis (Springer, 1980).
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281 7.6 Bulirsch–Stoer Method

Our simplified version is no more accurate than the adaptive Runge–Kutta method,
but it is useful if the output is to appear at equally spaced values of x.

� bulStoer

This function contains a simplified algorithm for the Bulirsch–Stoer method.

## module bulStoer

’’’ X,Y = bulStoer(F,x,y,xStop,H,tol=1.0e-6).

Simplified Bulirsch-Stoer method for solving the

initial value problem {y}’ = {F(x,{y})}, where

{y} = {y[0],y[1],...y[n-1]}.

x,y = initial conditions

xStop = terminal value of x

H = increment of x at which results are stored

F = user-supplied function that returns the

array F(x,y) = {y’[0],y’[1],...,y’[n-1]}.

’’’

from numpy import array

from midpoint import *

def bulStoer(F,x,y,xStop,H,tol=1.0e-6):

X = []

Y = []

X.append(x)

Y.append(y)

while x < xStop:

H = min(H,xStop - x)

y = integrate(F,x,y,x + H,tol) # Midpoint method

x = x + H

X.append(x)

Y.append(y)

return array(X),array(Y)

EXAMPLE 7.10
Compute the solution of the initial value problem

y ′ = sin y y(0) = 1

at x = 0.5 with the midpoint formulas using n = 2 and n = 4, followed by Richardson
extrapolation (this problem was solved with the second-order Runge–Kutta method
in Example 7.3).
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282 Initial Value Problems

Solution With n = 2, the step length is h = 0.25. The midpoint formulas, Eqs. (7.26)
and (7.27), yield

y1 = y0 + hf0 = 1 + 0.25 sin 1.0 = 1.210 368

y2 = y0 + 2hf1 = 1 + 2(0.25) sin 1.210 368 = 1.467 87 3

yh(0.5) = 1
2

(y1 + y0 + hf2)

= 1
2

(1.210 368 + 1.467 87 3 + 0.25 sin 1.467 87 3)

= 1.463 459

Using n = 4, we have h = 0.125, and the midpoint formulas become

y1 = y0 + hf0 = 1 + 0.125 sin 1.0 = 1.105 184

y2 = y0 + 2hf1 = 1 + 2(0.125) sin 1.105 184 = 1.223 387

y3 = y1 + 2hf2 = 1.105 184 + 2(0.125) sin 1.223 387 = 1.340 248

y4 = y2 + 2hf3 = 1.223 387 + 2(0.125) sin 1.340 248 = 1.466 772

yh/2(0.5) = 1
2

(y4 + y3 + hf4)

= 1
2

(1.466 772 + 1.340 248 + 0.125 sin 1.466 772)

= 1.465 672

Richardson extrapolation results in

y(0.5) = 4yh/2(0.5) − yh(0.5)
3

= 4(1.465 672) − 1.463 459
3

= 1.466 410

which compares favorably with the “true” solution y(0.5) = 1.466 404.

EXAMPLE 7.11

R

C

L

i

i
E(t)
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283 7.6 Bulirsch–Stoer Method

The differential equations governing the loop current i and the charge q on the
capacitor of the electric circuit shown are

L
di
dt

+ Ri + q
C

= E(t )
dq
dt

= i

If the applied voltage E is suddenly increased from zero to 9 V, plot the resulting loop
current during the first 10 s. Use R = 1.0 �, L = 2 H, and C = 0.45 F.

Solution Letting

y =
[

y0

y1

]
=
[

q
i

]

and substituting the given data, the differential equations become

ẏ =
[

ẏ0

ẏ1

]
=
[

y1

(−Ry1 − y0/C + E) /L

]

The initial conditions are

y(0) =
[

0
0

]

We solved the problem with the function bulstoer with the increment H =
0.5 s:

#!/usr/bin/python

## example7_11

from bulStoer import *

from numpy import array,zeros

from printSoln import *

def F(x,y):

F = zeros(2)

F[0] = y[1]

F[1] =(-y[1] - y[0]/0.45 + 9.0)/2.0

return F

H = 0.5

xStop = 10.0

x = 0.0

y = array([0.0, 0.0])

X,Y = bulStoer(F,x,y,xStop,H)

printSoln(X,Y,1)

raw_input("\nPress return to exit")
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284 Initial Value Problems

Skipping the numerical output, the plot of the current is

t (s)
0.0 2.0 4.0 6.0 8.0 10.0

i (
A

)

-2

-1

0

1

2

3

4

Recall that in each interval H (the spacing of open circles) the integration was
performed by the modified midpoint method and refined by Richardson extrapola-
tion.

PROBLEM SET 7.2

1. Derive the analytical solution of the problem

y ′′ + y ′ − 380y = 0 y(0) = 1 y ′(0) = −20

Would you expect difficulties in solving this problem numerically?
2. Consider the problem

y ′ = x − 10y y(0) = 10

(a) Verify that the analytical solution is y(x) = 0.1x − 0.001 + 10.01e−10x . (b) De-
termine the step size h that you would use in numerical solution with the (non-
adaptive) Runge–Kutta method.

3. � Integrate the initial value problem in Prob. 2 from x = 0 to 5 with the Runge–
Kutta method using (a) h = 0.1, (b) h = 0.25, and (c) h = 0.5. Comment on the
results.

4. � Integrate the initial value problem in Prob. 2 from x = 0 to 10 with the adaptive
Runge–Kutta method.

5. �

m
k

c

y
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285 7.6 Bulirsch–Stoer Method

The differential equation describing the motion of the mass–spring–dashpot sys-
tem is

ÿ + c
m

ẏ + k
m

y = 0

where m = 2 kg, c = 460 N·s/m, and k = 450 N/m. The initial conditions are
y(0) = 0.01 m and ẏ(0) = 0. (a) Show that this is a stiff problem and determine a
value of h that you would use in numerical integration with the nonadaptive
Runge–Kutta method. (c) Carry out the integration from t = 0 to 0.2 s with the
chosen h and plot ẏ versus t .

6. � Integrate the initial value problem specified in Prob. 5 with the adaptive
Runge–Kutta method from t = 0 to 0.2 s, and plot ẏ versus t .

7. � Compute the numerical solution of the differential equation

y ′′ = 16.81y y(0) = 1.0 y ′(0) = −4.1

from x = 0 to 2 with the adaptive Runge–Kutta method. Use the initial conditions
(a) y(0) = 1.0, y ′(0) = −4.1; and (b) y(0) = 1.0, y ′(0) = −4.11. Explain the large
difference in the two solutions. Hint: derive the analytical solutions.

8. � Integrate

y ′′ + y ′ − y2 = 0 y(0) = 1 y ′(0) = 0

from x = 0 to 3.5. Is the sudden increase in y near the upper limit real or an arti-
fact caused by instability?

9. � Solve the stiff problem – see Eq. (7.16)

y ′′ + 1001y ′ + 1000y = 0 y(0) = 1 y ′(0) = 0

from x = 0 to 0.2 with the adaptive Runge–Kutta method and plot ẏ versus x.
10. � Solve

y ′′ + 2y ′ + 3y = 0 y(0) = 0 y ′(0) =
√

2

with the adaptive Runge–Kutta method from x = 0 to 5 (the analytical solution is
y = e−x sin

√
2x).

11. � Solve the differential equation

y ′′ = 2yy ′

from x = 0 to 10 with the initial conditions y(0) = 1, y ′(0) = −1. Plot y versus x.
12. � Repeat Prob. 11 with the initial conditions y(0) = 0, y ′(0) = 1 and the integra-

tion range x = 0 to 1.5.
13. � Use the adaptive Runge–Kutta method to integrate

y ′ =
(

9
y

− y
)

x y(0) = 5

from x = 0 to 4 and plot y versus x.
14. � Solve Prob. 13 with the Bulirsch–Stoer method using H = 0.5.
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286 Initial Value Problems

15. � Integrate

x2y ′′ + xy ′ + y = 0 y(1) = 0 y ′(1) = −2

from x = 1 to 20, and plot y and y ′ versus x. Use the Bulirsch–Stoer method.
16. �

k
m

x

The magnetized iron block of mass m is attached to a spring of stiffness k and
free length L. The block is at rest at x = L when the electromagnet is turned on,
exerting a repulsive force F = c/x2 on the block. The differential equation of the
resulting motion is

mẍ = c
x2

− k(x − L)

Determine the amplitude and the period of the motion by numerical integration
with the adaptive Runge–Kutta method. Use c = 5 N·m2, k = 120 N/m, L = 0.2
m, and m = 1.0 kg.

17. �

θ

φ

A
B

C

The bar A BC is attached to the vertical rod with a horizontal pin. The assembly
is free to rotate about the axis of the rod. Neglecting friction, the equations of
motion of the system are

θ̈ = φ̇
2

sin θ cos θ φ̈ = −2θ̇ φ̇ cot θ

The system is set into motion with the initial conditions θ(0) = π/12 rad, θ̇(0) =
0, φ(0) = 0 and φ̇(0) = 20 rad/s. Obtain a numerical solution with the adaptive
Runge–Kutta method from t = 0 to 1.5 s and plot φ̇ versus t .

18. � Solve the circuit problem in Example 7.11 if R = 0 and

E(t ) =
{

0 when t < 0
9 sin πt when t ≥ 0

19. � Solve Prob. 21 in Problem Set 7.1 if E = 240 V (constant).
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287 7.6 Bulirsch–Stoer Method

20. �

R L

L

R C
i i

E(t)

1

2

21

i2i1

Kirchoff’s equations for the circuit in the figure are

L
di1

dt
+ R1i1 + R2(i1 − i2) = E(t )

L
di2

dt
+ R2(i2 − i1) + q2

C
= 0

where

dq2

dt
= i2

Using the data R1 = 4 �, R2 = 10 �, L = 0.032 H, C = 0.53 F, and

E(t ) =
{

20 V if 0 < t < 0.005 s
0 otherwise

plot the transient loop currents i1 and i2 from t = 0 to 0.05 s.
21. � Consider a closed biological system populated by M number of prey and N

number of predators. Volterra postulated that the two populations are related by
the differential equations

Ṁ = a M − bMN

Ṅ = −cN + d MN

where a , b, c, and d are constants. The steady-state solution is M0 = c/d, N0 =
a/b; if numbers other than these are introduced into the system, the populations
undergo periodic fluctuations. Introducing the notation

y0 = M/M0 y1 = N/N0

allows us to write the differential equations as

ẏ0 = a(y0 − y0y1)

ẏ1 = b(−y1 + y0y1)

Using a = 1.0/year, b = 0.2/year, y0(0) = 0.1, and y1(0) = 1.0, plot the two popu-
lations from t = 0 to 5 years.
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288 Initial Value Problems

22. � The equations

u̇ = −au + av

v̇ = cu − v − uw

ẇ = −bw + uv

known as the Lorenz equations, are encountered in the theory of fluid dynam-
ics. Letting a = 5.0, b = 0.9, and c = 8.2, solve these equations from t = 0 to 10
with the initial conditions u(0) = 0, v(0) = 1.0, w(0) = 2.0 and plot u(t ). Repeat
the solution with c = 8.3. What conclusions can you draw from the results?

23. �

c = 25 mg/m3 1c 2c

3c 4c
c = 50 mg/m3

32 m /s
34 m /s 33 m /s

3m /s4 3m /s

2 3m /s

3 3m /s

1 3m /s

4

1 3m /s

Four mixing tanks are connected by pipes. The fluid in the system is pumped
through the pipes at the rates shown in the figure. The fluid entering the system
contains a chemical of concentration c as indicated. The rate at which the mass
of the chemical changes in tank i is

Vi
dci

dt
= � (Qc)in − �(Qc)out

where Vi is the volume of the tank and Q represents the flow rate in the pipes
connected to it. Applying this equation to each tank, we obtain

V1
dci

dt
= −6c1 + 4c2 + 2(25)

V2
dc2

dt
= −7c2 + 3c3 + 4c4

V3
dc3

dt
= 4c1 − 4c3

V4
dc4

dt
= 2c1 + c3 − 4c4 + 50

Plot the concentration of the chemical in tanks 1 and 2 versus time t from t = 0 to
100 s. Let V1 = V2 = V3 = V4 = 10 m3 and assume that the concentration in each
tank is zero at t = 0. The steady-state version of this problem was solved in Prob.
21, Problem Set 2.2.
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289 7.7 Other Methods

7.7 Other Methods

The methods described so far belong to a group known as single-step methods. The
name stems from the fact that the information at a single point on the solution curve
is sufficient to compute the next point. There are also multistep methods that utilize
several points on the curve to extrapolate the solution at the next step. Well-known
members of this group are the methods of Adams, Milne, Hamming, and Gere. These
methods were once popular but have lost some of their luster in the past few years.
Multistep methods have two shortcomings that complicate their implementation:

• The methods are not self-starting, but must be provided with the solution at the
first few points by a single-step method.

• The integration formulas assume equally spaced steps, which makes it difficult
to change the step size.

Both of these hurdles can be overcome, but the price is complexity of the algo-
rithm that increases with the sophistication of the method. The benefits of multistep
methods are minimal – the best of them can outperform their single-step counter-
parts in certain problems, but these occasions are rare.
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