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5 Numerical Differentiation

Given the function f (x), compute dn f/dxn at given x

5.1 Introduction

Numerical differentiation deals with the following problem: We are given the func-
tion y = f (x) and wish to obtain one of its derivatives at the point x = xk . The term
“given” means that we either have an algorithm for computing the function or pos-
sess a set of discrete data points (xi , yi ), i = 0, 1, . . . , n. In either case, we have ac-
cess to a finite number of (x, y) data pairs from which to compute the derivative. If
you suspect by now that numerical differentiation is related to interpolation, you are
right – one means of finding the derivative is to approximate the function locally by
a polynomial and then differentiate it. An equally effective tool is the Taylor series
expansion of f (x) about the point xk , which has the advantage of providing us with
information about the error involved in the approximation.

Numerical differentiation is not a particularly accurate process. It suffers from a
conflict between roundoff errors (due to limited machine precision) and errors inher-
ent in interpolation. For this reason, a derivative of a function can never be computed
with the same precision as the function itself.

5.2 Finite Difference Approximations

The derivation of the finite difference approximations for the derivatives of f (x) is
based on forward and backward Taylor series expansions of f (x) about x, such as

f (x + h) = f (x) + hf ′(x) + h2

2!
f ′′(x) + h3

3!
f ′′′(x) + h4

4!
f (4)(x) + · · · (a)

f (x − h) = f (x) − hf ′(x) + h2

2!
f ′′(x) − h3

3!
f ′′′(x) + h4

4!
f (4)(x) − · · · (b)
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178 Numerical Differentiation

f (x + 2h) = f (x) + 2hf ′(x) + (2h)2

2!
f ′′ (x) + (2h)3

3!
f ′′′(x) + (2h)4

4!
f (4)(x) + · · · (c)

f (x − 2h) = f (x) − 2hf ′(x) + (2h)2

2!
f ′′ (x) − (2h)3

3!
f ′′′(x) + (2h)4

4!
f (4)(x) − · · · (d)

We also record the sums and differences of the series:

f (x + h) + f (x − h) = 2f (x) + h2 f ′′(x) + h4

12
f (4)(x) + · · · (e)

f (x + h) − f (x − h) = 2hf ′(x) + h3

3
f ′′′(x) + . . . (f)

f (x + 2h) + f (x − 2h) = 2f (x) + 4h2 f ′′(x) + 4h4

3
f (4)(x) + · · · (g)

f (x + 2h) − f (x − 2h) = 4hf ′(x) + 8h3

3
f ′′′(x) + · · · (h)

Note that the sums contain only even derivatives, whereas the differences retain just
the odd derivatives. Equations (a)–(h) can be viewed as simultaneous equations that
can be solved for various derivatives of f (x). The number of equations involved and
the number of terms kept in each equation depend on the order of the derivative and
the desired degree of accuracy.

First Central Difference Approximations

The solution of Eq. (f) for f ′(x) is

f ′(x) = f (x + h) − f (x − h)
2h

− h2

6
f ′′′(x) − · · ·

or

f ′(x) = f (x + h) − f (x − h)
2h

+ O(h2) (5.1)

which is called the first central difference approximation for f ′(x). The term O(h2)
reminds us that the truncation error behaves as h2.

Similarly, Eq. (e) yields the first central difference approximation for f ′′(x):

f ′′(x) = f (x + h) − 2f (x) + f (x − h)
h2

+ h2

12
f (4)(x) + . . .

or

f ′′(x) = f (x + h) − 2f (x) + f (x − h)
h2

+ O(h2) (5.2)

Central difference approximations for other derivatives can be obtained from
Eqs. (a)–(h) in the same manner. For example, eliminating f ′(x) from Eqs. (f) and
(h) and solving for f ′′′(x) yields

f ′′′(x) = f (x + 2h) − 2f (x + h) + 2f (x − h) − f (x − 2h)
2h3

+ O(h2) (5.3)
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179 5.2 Finite Difference Approximations

f (x − 2h) f (x − h) f (x) f (x + h) f (x + 2h)

2hf ′(x) −1 0 1

h2 f ′′(x) 1 −2 1

2h3 f ′′′(x) −1 2 0 −2 1

h4 f (4)(x) 1 −4 6 −4 1

Table 5.1 Coefficients of central finite difference approximations
of O(h2)

The approximation

f (4)(x) = f (x + 2h) − 4f (x + h) + 6f (x) − 4f (x − h) + f (x − 2h)
h4

+ O(h2) (5.4)

is available from Eqs. (e) and (g) after eliminating f ′′(x). Table 5.1 summarizes the
results.

First Noncentral Finite Difference Approximations

Central finite difference approximations are not always usable. For example, con-
sider the situation where the function is given at the n discrete points x0, x1, . . . , xn.
Because central differences use values of the function on each side of x, we would
be unable to compute the derivatives at x0 and xn. Clearly, there is a need for finite
difference expressions that require evaluations of the function on only one side of x.
These expressions are called forward and backward finite difference approximations.

Noncentral finite differences can also be obtained from Eqs. (a)–(h). Solving Eq.
(a) for f ′(x), we get

f ′(x) = f (x + h) − f (x)
h

− h
2

f ′′(x) − h2

6
f ′′′(x) − h3

4!
f (4)(x) − · · ·

Keeping only the first term on the right-hand side leads to the first forward difference
approximation

f ′(x) = f (x + h) − f (x)
h

+ O(h) (5.5)

Similarly, Eq. (b) yields the first backward difference approximation

f ′(x) = f (x) − f (x − h)
h

+ O(h) (5.6)

Note that the truncation error is now O(h), which is not as good as O(h2) in central
difference approximations.

We can derive the approximations for higher derivatives in the same manner. For
example, Eqs. (a) and (c) yield

f ′′(x) = f (x + 2h) − 2f (x + h) + f (x)
h2

+ O(h) (5.7)

The third and fourth derivatives can be derived in a similar fashion. The results are
shown in Tables 5.2a and 5.2b.
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180 Numerical Differentiation

f (x) f (x + h) f (x + 2h) f (x + 3h) f (x + 4h)

hf ′(x) −1 1

h2 f ′′(x) 1 −2 1

h3 f ′′′(x) −1 3 −3 1

h4 f (4)(x) 1 −4 6 −4 1

Table 5.2a Coefficients of forward finite difference approxima-
tions of O(h)

f (x − 4h) f (x − 3h) f (x − 2h) f (x − h) f (x)

hf ′(x) −1 1

h2 f ′′(x) 1 −2 1

h3 f ′′′(x) −1 3 −3 1

h4 f (4)(x) 1 −4 6 −4 1

Table 5.2b Coefficients of backward finite difference approxima-
tions of O(h)

Second Noncentral Finite Difference Approximations

Finite difference approximations of O(h) are not popular, for reasons to be explained
shortly. The common practice is to use expressions of O(h2). To obtain noncentral
difference formulas of this order, we have to retain more terms in the Taylor series. As
an illustration, we derive the expression for f ′(x). We start with Eqs. (a) and (c), which
are

f (x + h) = f (x) + hf ′(x) + h2

2
f ′′(x) + h3

6
f ′′′(x) + h4

24
f (4)(x) + · · ·

f (x + 2h) = f (x) + 2hf ′(x) + 2h2 f ′′ (x) + 4h3

3
f ′′′(x) + 2h4

3
f (4)(x) + · · ·

We eliminate f ′′(x) by multiplying the first equation by 4 and subtracting it from the
second equation. The result is

f (x + 2h) − 4f (x + h) = −3f (x) − 2hf ′(x) + h4

2
f (4)(x) + · · ·

Therefore,

f ′(x) = −f (x + 2h) + 4f (x + h) − 3f (x)
2h

+ h2

4
f (4)(x) + · · ·

or

f ′(x) = −f (x + 2h) + 4f (x + h) − 3f (x)
2h

+ O(h2) (5.8)

Equation (5.8) is called the second forward finite difference approximation.
The derivation of finite difference approximations for higher derivatives involve

additional Taylor series. Thus the forward difference approximation for f ′′(x) utilizes
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181 5.2 Finite Difference Approximations

f (x) f (x + h) f (x + 2h) f (x + 3h) f (x + 4h) f (x + 5h)

2hf ′(x) −3 4 −1

h2 f ′′(x) 2 −5 4 −1

2h3 f ′′′(x) −5 18 −24 14 −3

h4 f (4)(x) 3 −14 26 −24 11 −2

Table 5.3a Coefficients of forward finite difference approximations of O(h2)

f (x − 5h) f (x − 4h) f (x − 3h) f (x − 2h) f (x − h) f (x)

2hf ′(x) 1 −4 3

h2 f ′′(x) −1 4 −5 2

2h3 f ′′′(x) 3 −14 24 −18 5

h4 f (4)(x) −2 11 −24 26 −14 3

Table 5.3b Coefficients of backward finite difference approximations of O(h2)

series for f (x + h), f (x + 2h), and f (x + 3h); the approximation for f ′′′(x) involves
Taylor expansions for f (x + h), f (x + 2h), f (x + 3h), f (x + 4h), and so on. As you can
see, the computations for high-order derivatives can become rather tedious. The re-
sults for both the forward and backward finite differences are summarized in Tables
5.3a and 5.3b.

Errors in Finite Difference Approximations

Observe that in all finite difference expressions, the sum of the coefficients is zero.
The effect on the roundoff error can be profound. If h is very small, the values of
f (x), f (x ± h), f (x ± 2h), and so forth will be approximately equal. When they are
multiplied by the coefficients and added, several significant figures can be lost. On
the other hand, we cannot make h too large, because then the truncation error would
become excessive. This unfortunate situation has no remedy, but we can obtain some
relief by taking the following precautions:

• Use double-precision arithmetic.
• Employ finite difference formulas that are accurate to at least O(h2).

To illustrate the errors, let us compute the second derivative of f (x) = e−x at
x = 1 from the central difference formula, Eq. (5.2). We carry out the calculations
with six- and eight-digit precision, using different values of h. The results, shown in
Table 5.4, should be compared with f ′′(1) = e−1 = 0.367 879 44.

In the six-digit computations, the optimal value of h is 0.08, yielding a result ac-
curate to three significant figures. Hence, three significant figures are lost because of a
combination of truncation and roundoff errors. Above optimal h, the dominant error
is due to truncation; below it, the roundoff error becomes pronounced. The best re-
sult obtained with the eight-digit computation is accurate to four significant figures.
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182 Numerical Differentiation

h 6-digit precision 8-digit precision

0.64 0.380 610 0.380 609 11

0.32 0.371 035 0.371 029 39

0.16 0.368 711 0.368 664 84

0.08 0.368 281 0.368 076 56

0.04 0.368 75 0.367 831 25

0.02 0.37 0.3679

0.01 0.38 0.3679

0.005 0.40 0.3676

0.0025 0.48 0.3680

0.00125 1.28 0.3712

Table 5.4 (e−x ) ′′ at x = 1 from central finite differ-
ence approximation

Because the extra precision decreases the roundoff error, the optimal h is smaller
(about 0.02) than in the six-figure calculations.

5.3 Richardson Extrapolation

Richardson extrapolation is a simple method for boosting the accuracy of certain nu-
merical procedures, including finite difference approximations (we also use it later in
other applications).

Suppose that we have an approximate means of computing some quantity G.
Moreover, assume that the result depends on a parameter h. Denoting the approxi-
mation by g(h), we have G = g(h) + E(h), where E(h) represents the error. Richard-
son extrapolation can remove the error, provided that it has the form E(h) = chp, c
and p being constants. We start by computing g(h) with some value of h, say, h = h1.
In that case we have

G = g(h1) + chp
1 (i)

Then we repeat the calculation with h = h2, so that

G = g(h2) + chp
2 (j)

Eliminating c and solving for G, Eqs. (i) and (j) yield

G = (h1/h2)pg(h2) − g(h1)
(h1/h2)p − 1

(5.8)

which is the Richardson extrapolation formula. It is common practice to use h2 =
h1/2, in which case Eq. (5.8) becomes

G = 2pg(h1/2) − g(h1)
2p − 1

(5.9)
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183 5.3 Richardson Extrapolation

Let us illustrate Richardson extrapolation by applying it to the finite difference
approximation of (e−x ) ′′ at x = 1. We work with six-digit precision and utilize the re-
sults in Table 5.4. Because the extrapolation works only on the truncation error, we
must confine h to values that produce negligible roundoff. In Table 5.4 we have

g(0.64) = 0.380 610 g(0.32) = 0.371 035

The truncation error in central difference approximation is E(h) = O(h2) = c1h2 +
c2h4 + c3h6 + . . .. Therefore, we can eliminate the first (dominant) error term if we
substitute p = 2 and h1 = 0.64 in Eq. (5.9). The result is

G = 22g(0.32) − g(0.64)
22 − 1

= 4(0.371 035) − 0.380 610
3

= 0. 367 84 3

which is an approximation of (e−x ) ′′ with the error O(h4). Note that it is as accurate as
the best result obtained with eight-digit computations in Table 5.4.

EXAMPLE 5.1
Given the evenly spaced data points

x 0 0.1 0.2 0.3 0.4

f (x) 0.0000 0.0819 0.1341 0.1646 0.1797

compute f ′(x) and f ′′(x) at x = 0 and 0.2 using finite difference approximations of
O(h2).

Solution We use finite difference approximations of O(h2). From the forward differ-
ence tables Table 5.3a, we get

f ′(0) = −3f (0) + 4f (0.1) − f (0.2)
2(0.1)

= −3(0) + 4(0.0819) − 0.1341
0.2

= 0.967

f ′′(0) = 2f (0) − 5f (0.1) + 4f (0.2) − f (0.3)
(0.1)2

= 2(0) − 5(0.0819) + 4(0.1341) − 0.1646
(0.1)2

= −3.77

The central difference approximations in Table 5.1 yield

f ′(0.2) = −f (0.1) + f (0.3)
2(0.1)

= −0.0819 + 0.1646
0.2

= 0.4135

f ′′(0.2) = f (0.1) − 2f (0.2) + f (0.3)
(0.1)2

= 0.0819 − 2(0.1341) + 0.1646
(0.1)2

= −2.17

EXAMPLE 5.2
Use the data in Example 5.1 to compute f ′(0) as accurately as you can.

Solution One solution is to apply Richardson extrapolation to finite difference ap-
proximations. We start with two forward difference approximations of O(h2) for f ′(0):
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184 Numerical Differentiation

one using h = 0.2 and the other one h = 0.1. Referring to the formulas of O(h2) in Ta-
ble 5.3a, we get

g(0.2) = −3f (0) + 4f (0.2) − f (0.4)
2(0.2)

= 3(0) + 4(0.1341) − 0.1797
0.4

= 0.8918

g(0.1) = −3f (0) + 4f (0.1) − f (0.2)
2(0.1)

= −3(0) + 4(0.0819) − 0.1341
0.2

= 0.9675

Recall that the error in both approximations is of the form E(h) = c1h2 + c2h4 +
c3h6 + . . .. We can now use Richardson extrapolation, Eq. (5.9), to eliminate the dom-
inant error term. With p = 2 we obtain

f ′(0) ≈ G = 22g(0.1) − g(0.2)
22 − 1

= 4(0.9675) − 0.8918
3

= 0.9927

which is a finite difference approximation of O(h4)̇.

EXAMPLE 5.3

α

β

A

B

C

D

a

b

c

d

The linkage shown has the dimensions a = 100 mm, b = 120 mm, c = 150 mm,
and d = 180 mm. It can be shown by geometry that the relationship between the
angles α and β is(

d − a cos α − b cos β
)2 + (a sin α + b sin β

)2 − c2 = 0

For a given value of α, we can solve this transcendental equation for β by one of the
root-finding methods in Chapter 2. This was done with α = 0◦, 5◦, 10◦, . . . , 30◦, the
results being

α (deg) 0 5 10 15 20 25 30

β (rad) 1.6595 1.5434 1.4186 1.2925 1.1712 1.0585 0.9561

If link A B rotates with the constant angular velocity of 25 rad/s, use finite difference
approximations of O(h2) to tabulate the angular velocity dβ/dt of link BC against α.

Solution The angular speed of BC is

dβ

dt
= dβ

dα

dα

dt
= 25

dβ

dα
rad/s
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185 5.4 Derivatives by Interpolation

where dβ/dα can be computed from finite difference approximations using the data
in the table. Forward and backward differences of O(h2) are used at the endpoints,
central differences elsewhere. Note that the increment of α is

h = (5 deg
) ( π

180
rad / deg

)
= 0.087 266 rad

The computations yield

β̇(0◦) = 25
−3β(0◦) + 4β(5◦) − β(10◦)

2h
= 25

−3(1.6595) + 4(1.5434) − 1.4186
2 (0.087 266)

= −32.01 rad/s

β̇(5◦) = 25
β(10◦) − β(0◦)

2h
= 25

1.4186 − 1.6595
2(0.087 266)

= −34.51 rad/s

and so forth.

The complete set of results is

α (deg) 0 5 10 15 20 25 30

β̇ (rad/s) −32.01 −34.51 −35.94 −35.44 −33.52 −30.81 −27.86

5.4 Derivatives by Interpolation

If f (x) is given as a set of discrete data points, interpolation can be a very effective
means of computing its derivatives. The idea is to approximate the derivative of f (x)
by the derivative of the interpolant. This method is particularly useful if the data
points are located at uneven intervals of x, when the finite difference approximations
listed in the last section are not applicable.1

Polynomial Interpolant

The idea here is simple: fit the polynomial of degree n

Pn−1(x) = a0 + a1x + a2x2 + · · · + anxn

through n + 1 data points and then evaluate its derivatives at the given x. As pointed
out in Section 3.2, it is generally advisable to limit the degree of the polynomial to
less than 6 in order to avoid spurious oscillations of the interpolant. Because these
oscillations are magnified with each differentiation, their effect can devastating. In
view of this limitation, the interpolation is usually a local one, involving no more than
a few nearest-neighbor data points.

For evenly spaced data points, polynomial interpolation and finite difference
approximations produce identical results. In fact, the finite difference formulas are
equivalent to polynomial interpolation.

1 It is possible to derive finite difference approximations for unevenly spaced data, but they would
not be as accurate as the formulas derived in Section 5.2.
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186 Numerical Differentiation

Several methods of polynomial interpolation were introduced in Section 3.2. Un-
fortunately, none of them are suited for the computation of derivatives of the inter-
polant. The method that we need is one that determines the coefficients a0, a1, . . . , an

of the polynomial. There is only one such method discussed in Chapter 3: the least-
squares fit. Although this method is designed mainly for smoothing of data, it will
carry out interpolation if we use m = n in Eq. (3.22) – recall that m is the degree of the
interpolating polynomial and n + 1 represents the number of data points to be fitted.
If the data contains noise, then the least-squares fit should be used in the smoothing
mode, that is, with m < n. After the coefficients of the polynomial have been found,
the polynomial and its first two derivatives can be evaluated efficiently by the func-
tion evalPoly listed in Section 4.7.

Cubic Spline Interpolant

Because of to its stiffness, the cubic spline is a good global interpolant; moreover, it
is easy to differentiate. The first step is to determine the second derivatives ki of the
spline at the knots by solving Eqs. (3.11). This can be done with the function curva-

tures in the module cubicSpline listed in Section 3.3. The first and second deriva-
tives are then computed from

f ′
i,i+1(x) = ki

6

[
3(x − xi+1)2

xi − xi+1
− (xi − xi+1)

]

−ki+1

6

[
3(x − xi )2

xi − xi+1
− (xi − xi+1)

]
+ yi − yi+1

xi − xi+1
(5.10)

f ′′
i,i+1(x) = ki

x − xi+1

xi − xi+1
− ki+1

x − xi

xi − xi+1
(5.11)

which are obtained by differentiation of Eq. (3.10).

EXAMPLE 5.4
Given the data

x 1.5 1.9 2.1 2.4 2.6 3.1

f (x) 1.0628 1.3961 1.5432 1.7349 1.8423 2.0397

compute f ′(2) and f ′′(2) using (1) polynomial interpolation over three nearest-
neighbor points and (2) the natural cubic spline interpolant spanning all the data
points.

Solution of Part (1) The interpolant is P2(x) = a0 + a1x + a2x2 passing through the
points at x = 1.9, 2.1, and 2.4. The normal equations, Eqs. (3.22), of the least-squares
fit are ⎡

⎢⎣ n
∑

xi
∑

x2
i∑

xi
∑

x2
i

∑
x3

i∑
x2

i

∑
x3

i

∑
x4

i

⎤
⎥⎦
⎡
⎢⎣a0

a1

a2

⎤
⎥⎦ =

⎡
⎢⎣
∑

yi∑
yi xi∑
yi x2

i

⎤
⎥⎦
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187 5.4 Derivatives by Interpolation

After substituting the data, we get⎡
⎢⎣ 3 6.4 13.78

6.4 13.78 29.944
13.78 29.944 65.6578

⎤
⎥⎦
⎡
⎢⎣a0

a1

a2

⎤
⎥⎦ =

⎡
⎢⎣ 4.6742

10.0571
21.8385

⎤
⎥⎦

which yields a =
[
−0.7714 1.5075 −0.1930

]T
.

The derivatives of the interpolant are P ′
2(x) = a1 + 2a2x and P ′′

2 (x) = 2a2. There-
fore,

f ′(2) ≈ P ′
2(2) = 1.5075 + 2(−0.1930)(2) = 0.7355

f ′′(2) ≈ P ′′
2 (2) = 2(−0.1930) = −0.3860

Solution of Part (2) We must first determine the second derivatives ki of the spline
at its knots, after which the derivatives of f (x) can be computed from Eqs. (5.10) and
(5.11). The first part can be carried out by the following small program:

#!/usr/bin/python

## example5_4

from cubicSpline import curvatures

from LUdecomp3 import *

from numpy import array

xData = array([1.5, 1.9, 2.1, 2.4, 2.6, 3.1])

yData = array([1.0628, 1.3961, 1.5432, 1.7349, 1.8423, 2.0397])

print curvatures(xData,yData)

raw_input("Press return to exit")

The output of the program, consisting of k0 to k5, is

[ 0. -0.4258431 -0.37744139 -0.38796663 -0.55400477 0. ]

Press return to exit

Because x = 2 lies between knots 1 and 2, we must use Eqs. (5.10) and (5.11) with
i = 1. This yields

f ′(2) ≈ f ′
1,2(2) = k1

6

[
3(x − x2)2

x1 − x2
− (x1 − x2)

]

−k2

6

[
3(x − x1)2

x1 − x2
− (x1 − x2)

]
+ y1 − y2

x1 − x2

= (−0.4258)
6

[
3(2 − 2.1)2

(−0.2)
− (−0.2)

]

− (−0.3774)
6

[
3(2 − 1.9)2

(−0.2)
− (−0.2)

]
+ 1.3961 − 1.5432

(−0.2)

= 0.7351

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:38 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.007

Cambridge Books Online © Cambridge University Press, 2016



188 Numerical Differentiation

f ′′(2) ≈ f ′′
1,2(2) = k1

x − x2

x1 − x2
− k2

x − x1

x1 − x2

= (−0.4258)
2 − 2.1
(−0.2)

− (−0.3774)
2 − 1.9
(−0.2)

= −0. 4016

Note that the solutions for f ′(2) in parts (1) and (2) differ only in the fourth signif-
icant figure, but the values of f ′′(2) are much further apart. This is not unexpected,
considering the general rule: The higher the order of the derivative, the lower the pre-
cision with which it can be computed. It is impossible to tell which of the two results
is better without knowing the expression for f (x). In this particular problem, the data
points fall on the curve f (x) = x2e−x/2, so that the “true” values of the derivatives are
f ′(2) = 0.7358 and f ′′(2) = −0.3679.

EXAMPLE 5.5
Determine f ′(0) and f ′(1) from the following noisy data:

x 0 0.2 0.4 0.6

f (x) 1.9934 2.1465 2.2129 2.1790

x 0.8 1.0 1.2 1.4

f (x) 2.0683 1.9448 1.7655 1.5891

Solution We used the program listed in Example 3.10 to find the best polynomial fit
(in the least-squares sense) to the data. The program was run three times with the
following results:

Degree of polynomial ==> 2

Coefficients are:

[ 2.0261875 0.64703869 -0.70239583]

Std. deviation = 0.0360968935809

Degree of polynomial ==> 3

Coefficients are:

[ 1.99215 1.09276786 -1.55333333 0.40520833]

Std. deviation = 0.0082604082973

Degree of polynomial ==> 4

Coefficients are:

[ 1.99185568 1.10282373 -1.59056108 0.44812973 -0.01532907]

Std. deviation = 0.00951925073521

Degree of polynomial ==>

Finished. Press return to exit

Based on standard deviation, the cubic seems to be the best candidate for the
interpolant. Before accepting the result, we compare the plots of the data points and
the interpolant – see the figure. The fit does appear to be satisfactory.
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189 5.4 Derivatives by Interpolation

x
0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40

f(
x)

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

Approximating f (x) by the interpolant, we have

f (x) ≈ a0 + a1x + a2x2 + a3x3

so that

f ′(x) ≈ a1 + 2a2x + 3a3x2

Therefore,

f ′(0) ≈ a1 = 1.093

f ′(1) = a1 + 2a2 + 3a3 = 1.093 + 2(−1.553) + 3(0.405) = −0. 798

In general, derivatives obtained from noisy data are at best rough approxima-
tions. In this problem, the data represents f (x) = (x + 2)/ cosh x with added random
noise. Thus, f ′(x) = [1 − (x + 2) tanh x

]
/ cosh x, so that the “correct” derivatives are

f ′(0) = 1.000 and f ′(1) = −0.833.

PROBLEM SET 5.1

1. Given the values of f (x) at the points x, x − h1, and x + h2, where h1 �= h2, de-
termine the finite difference approximation for f ′′(x). What is the order of the
truncation error?

2. Given the first backward finite difference approximations for f ′(x) and f ′′(x), de-
rive the first backward finite difference approximation for f ′′′(x) using the oper-
ation f ′′′(x) = [f ′′(x)

] ′
.

3. Derive the central difference approximation for f ′′(x) accurate to O(h4) by apply-
ing Richardson extrapolation to the central difference approximation of O(h2).

4. Derive the second forward finite difference approximation for f ′′′(x) from the
Taylor series.

5. Derive the first central difference approximation for f (4)(x) from the Taylor series.
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190 Numerical Differentiation

6. Use finite difference approximations of O(h2) to compute f ′(2.36) and f ′′(2.36)
from the data

x 2.36 2.37 2.38 2.39

f (x) 0.85866 0.86289 0.86710 0.87129

7. Estimate f ′(1) and f ′′(1) from the following data:

x 0.97 1.00 1.05

f (x) 0.85040 0.84147 0.82612

8. Given the data

x 0.84 0.92 1.00 1.08 1.16

f (x) 0.431711 0.398519 0.367879 0.339596 0.313486

calculate f ′′(1) as accurately as you can.
9. Use the data in the table to compute f ′(0.2) as accurately as possible.

x 0 0.1 0.2 0.3 0.4

f (x) 0.000 000 0.078 348 0.138 910 0.192 916 0.244 981

10. Using five significant figures in the computations, determine d(sin x)/dx at x =
0.8 from (a) the first forward difference approximation and (b) the first central
difference approximation. In each case, use h that gives the most accurate result
(this requires experimentation).

11. � Use polynomial interpolation to compute f ′ and f ′′ at x = 0, using the data

x −2.2 −0.3 0.8 1.9

f (x) 15.180 10.962 1.920 −2.040

Given that f (x) = x3 − 0. 3x2 − 8. 56x + 8. 448, gauge the accuracy of the result.
12. �

θ
R

2.5R

A

B

Cx

The crank A B of length R = 90 mm is rotating at constant angular speed of
dθ/dt = 5000 rev/min. The position of the piston C can be shown to vary with
the angle θ as

x = R
(

cos θ +
√

2.52 − sin2 θ

)

Write a program that computes the acceleration of the piston at θ = 0◦, 5◦,
10◦, . . ., 180◦ by numerical differentiation.

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:38 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.007

Cambridge Books Online © Cambridge University Press, 2016



191 5.4 Derivatives by Interpolation

13. � γ

α β

C

v

y

x
a

A B

The radar stations A and B, separated by the distance a = 500 m, track the plane
C by recording the angles α and β at 1-second intervals. If three successive read-
ings are

t (s) 9 10 11

α 54.80◦ 54.06◦ 53.34◦

β 65.59◦ 64.59◦ 63.62◦

calculate the speed v of the plane and the climb angle γ at t = 10 s. The coordi-
nates of the plane can be shown to be

x = a
tan β

tan β − tan α
y = a

tan α tan β

tan β − tan α

14. �

β

θα

B

A

D

C

20

70

190

19
0

60

Dimensions
in mm
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192 Numerical Differentiation

Geometric analysis of the linkage shown resulted in the following table relating
the angles θ and β:

θ (deg) 0 30 60 90 120 150

β (deg) 59.96 56.42 44.10 25.72 −0.27 −34.29

Assuming that member A B of the linkage rotates with the constant angular ve-
locity dθ/dt = 1 rad/s, compute dβ/dt in rad/s at the tabulated values of θ . Use
cubic spline interpolation.

15. � The relationship between stress σ and strain ε of some biological materials in
uniaxial tension is

dσ

dε
= a + bσ

where a and b are constants. The following table gives the results of a tension
test on such a material:

Strain ε

0
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

Stress σ (MPa)

0
0.252
0.531
0.840
1.184
1.558
1.975
2.444
2.943
3.500
4.115

Write a program that plots the tangent modulus dσ/dε versus σ and computes
the parameters a and b by linear regression.
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