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10 Introduction to Optimization

Find x that minimizes F (x) subject to g(x) = 0, h(x) ≥ 0

10.1 Introduction

Optimization is the term often used for minimizing or maximizing a function. It is
sufficient to consider the problem of minimization only; maximization of F (x) is
achieved by simply minimizing −F (x). In engineering, optimization is closely related
to design. The function F (x), called the merit function or objective function, is the
quantity that we wish to keep as small as possible, such as the cost or weight. The
components of x, known as the design variables, are the quantities that we are free
to adjust. Physical dimensions (lengths, areas, angles, etc.) are common examples of
design variables.

Optimization is a large topic with many books dedicated to it. The best we can do
in limited space is to introduce a few basic methods that are good enough for prob-
lems that are reasonably well behaved and do not involve too many design variables.
By omitting the more sophisticated methods, we may actually not miss all that much.
All optimization algorithms are unreliable to a degree – any one of them may work on
one problem and fail on another. As a rule of the thumb, by going up in sophistication
we gain computational efficiency, but not necessarily reliability.

The algorithms for minimization are iterative procedures that require starting
values of the design variables x. If F (x) has several local minima, the initial choice of
x determines which of these will be computed. There is no guaranteed way of finding
the global optimal point. One suggested procedure is to make several computer runs
using different starting points and pick the best result.

More often than not, the design variables are also subjected to restrictions, or
constraints, which may have the form of equalities or inequalities. As an example,
take the minimum weight design of a roof truss that has to carry a certain loading.
Assume that the layout of the members is given, so that the design variables are the
cross-sectional areas of the members. Here the design is dominated by inequality
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375 10.1 Introduction

constraints that consist of prescribed upper limits on the stresses and possibly the
displacements.

The majority of available methods are designed for unconstrained optimization,
where no restrictions are placed on the design variables. In these problems, the min-
ima, if they exit, are stationary points (points where the gradient vector of F (x) van-
ishes). In the more difficult problem of constrained optimization, the minima are
usually located where the F (x) surface meets the constraints. There are special al-
gorithms for constrained optimization, but they are not easily accessible because of
their complexity and specialization. One way to tackle a problem with constraints is
to use an unconstrained optimization algorithm, but modify the merit function so
that any violation of constrains is heavily penalized.

Consider the problem of minimizing F (x) where the design variables are subject
to the constraints

gi (x) = 0, i = 1, 2, . . . , M

hj (x) ≤ 0, j = 1, 2, . . . , N

We choose the new merit function be

F ∗(x) = F (x) + µP(x) (10.1a)

where

P(x) =
M∑

i=1

[gi (x)]2 +
N∑

j=1

{
max

[
0, hj (x)

]}2
(10.1b)

is the penalty function and µ is a multiplier. The function max(a , b) returns the larger
of a and b. It is evident that P(x) = 0 if no constraints are violated. Violation of a
constraint imposes a penalty proportional to the square of the violation. Hence, the
minimization algorithm tends to avoid the violations, the degree of avoidance being
dependent on the magnitude of µ. If µ is small, optimization will proceed faster be-
cause there is more “space” in which the procedure can operate, but there may be
significant violation of constraints. On the other hand, large µ can result in a poorly
conditioned procedure, but the constraints will be tightly enforced. It is advisable to
run the optimization program with a µ that is on the small side. If the results show
unacceptable constraint violation, increase µ and run the program again, starting
with the results of the previous run.

An optimization procedure may also become ill conditioned when the con-
straints have widely different magnitudes. This problem can be alleviated by scaling
the offending constraints, that is, multiplying the constraint equations by suitable
constants.

It is not always necessary (or even advisable) to employ an iterative minimization
algorithm. In problems where the derivatives of F (x) can be readily computed and
inequality constraints are absent, the optimal point can always be found directly by
calculus. For example, if there are no constraints, the coordinates of the point where
F (x) is minimized are given by the solution of the simultaneous (usually nonlinear)
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376 Introduction to Optimization

equations ∇F (x) = 0. The direct method for finding the minimum of F (x) subject to
equality constraints gi (x) = 0, i = 1, 2, . . . , m is to form the function

F ∗(x, λ) = F (x) +
m∑

i=1

λi gi (x) (10.2a)

and solve the equations

∇F ∗(x) = 0 gi (x) = 0, i = 1, 2, . . . , m (10.2b)

for x and λi . The parameters λi are known as the Lagrangian multipliers. The direct
method can also be extended to inequality constraints, but the solution of the result-
ing equations is not straightforward because of lack of uniqueness.

10.2 Minimization along a Line

Consider the problem of minimizing a function f (x) of a single variable x with the
constraints c ≤ x ≤ d. A hypothetical plot of the function is shown in Fig. 10.1. There
are two minimum points: a stationary point characterized by f ′(x) = 0 that repre-
sents a local minimum, and a global minimum at the constraint boundary. It appears
that finding the global minimum is simple. All the stationary points could be located
by finding the roots of df/dx = 0, and each constraint boundary may be checked for
a global minimum by evaluating f (c) and f (d). Then why do we need an optimization
algorithm? We need it if f (x) is difficult or impossible to differentiate – for example, if
f represents a complex computer algorithm.

Bracketing

Before a minimization algorithm can be entered, the minimum point must be brack-
eted. The procedure of bracketing is simple: start with an initial value of x0 and move
downhill computing the function at x1, x2, x3, . . . until we reach the point xn where
f (x) increases for the first time. The minimum point is now bracketed in the interval
(xn−2, xn). What should the step size hi = xi+1 − xi be? It is not a good idea to have a

f(x)

x

Local minimum

Global minimum

Constraint boundaries
c d

Figure 10.1. Example of local and global minima.
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377 10.2 Minimization along a Line
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Figure 10.2. Golden section telescoping.

constant hi , because it often results in too many steps. A more efficient scheme is to
increase the size with every step, the goal being to reach the minimum quickly, even
if its resulting bracket is wide. In our algorithm we chose to increase the step size by
a constant factor, that is, we use hi+1 = chi , c > 1.

Golden Section Search

The golden section search is the counterpart of bisection used in finding roots of
equations. Suppose that the minimum of f (x) has been bracketed in the interval
(a , b) of length h. To telescope the interval, we evaluate the function at x1 = b − Rh
and x2 = a + Rh, as shown in Fig. 10.2(a). The constant R is to be determined shortly.
If f1 > f2 as indicated in the figure, the minimum lies in (x1, b); otherwise, it is located
in (a , x2).

Assuming that f1 > f2, we set a ← x1 and x1 ← x2, which yields a new interval
(a , b) of length h ′ = Rh, as illustrated in Fig. 10.2(b). To carry out the next telescoping
operation, we evaluate the function at x2 = a + Rh ′ and repeat the process.

The procedure works only if Figs. 10.1(a) and (b) are similar, that is, if the same
constant R locates x1 and x2 in both figures. Referring to Fig. 10.2(a), we note that
x2 − x1 = 2Rh − h. The same distance in Fig. 10.2(b) is x1 − a = h ′ − Rh ′. Equating
the two, we get

2Rh − h = h ′ − Rh ′
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378 Introduction to Optimization

Substituting h ′ = Rh and cancelling h yields

2R − 1 = R(1 − R)

the solution of which is the golden ratio.1

R = −1 + √
5

2
= 0.618 033 989 . . . (10.3)

Note that each telescoping decreases the interval containing the minimum by
the factor R, which is not as good as the factor is 0.5 in bisection. However, the golden
search method achieves this reduction with one function evaluation, whereas two
evaluations would be needed in bisection.

The number of telescopings required to reduce h from
∣∣b − a

∣∣ to an error toler-
ance ε is given by ∣∣b − a

∣∣ Rn = ε

which yields

n = ln(ε/
∣∣b − a

∣∣)
ln R

= −2.078 087 ln
ε∣∣b − a
∣∣ (10.4)

� goldSearch

This module contains the bracketing and the golden section search algorithms. For
the factor that multiplies successive search intervals in bracket, we chose c = 1 + R.

## module goldSearch

’’’ a,b = bracket(f,xStart,h)

Finds the brackets (a,b) of a minimum point of the

user-supplied scalar function f(x).

The search starts downhill from xStart with a step

length h.

x,fMin = search(f,a,b,tol=1.0e-6)

Golden section method for determining x that minimizes

the user-supplied scalar function f(x).

The minimum must be bracketed in (a,b).

’’’

from math import log

def bracket(f,x1,h):

c = 1.618033989

f1 = f(x1)

x2 = x1 + h; f2 = f(x2)

1 R is the ratio of the sides of a “golden rectangle,” considered by ancient Greeks to have the perfect
proportions.
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379 10.2 Minimization along a Line

# Determine downhill direction and change sign of h if needed

if f2 > f1:

h = -h

x2 = x1 + h; f2 = f(x2)

# Check if minimum between x1 - h and x1 + h

if f2 > f1: return x2,x1 - h

# Search loop

for i in range (100):

h = c*h

x3 = x2 + h; f3 = f(x3)

if f3 > f2: return x1,x3

x1 = x2; x2 = x3

f1 = f2; f2 = f3

print ’’Bracket did not find a minimum’’

def search(f,a,b,tol=1.0e-9):

nIter = -2.078087*log(tol/abs(b-a)) # Eq. (10.4)

R = 0.618033989

C = 1.0 - R

# First telescoping

x1 = R*a + C*b; x2 = C*a + R*b

f1 = f(x1); f2 = f(x2)

# Main loop

for i in range(nIter):

if f1 > f2:

a = x1

x1 = x2; f1 = f2

x2 = C*a + R*b; f2 = f(x2)

else:

b = x2

x2 = x1; f2 = f1

x1 = R*a + C*b; f1 = f(x1)

if f1 < f2: return x1,f1

else: return x2,f2

EXAMPLE 10.1
Use goldSearch to find x that minimizes

f (x) = 1.6x3 + 3x2 − 2x

subject to the constraint x ≥ 0. Compare the result with the analytical solution.

Solution This is a constrained minimization problem. Either the minimum of f (x)
is a stationary point in x ≥ 0, or it is located at the constraint boundary x = 0.
We handle the constraint with the penalty function method by minimizing f (x) +
µ
[
min(0, x)

]2
.
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380 Introduction to Optimization

Starting at x = 1 and choosing h = 0.01 for the first step size in bracket (both
choices being rather arbitrary), we arrive at the following program:

#!/usr/bin/python

## example10_1

from goldSearch import *

def f(x):

mu = 1.0 # Constraint multiplier

c = min(0.0, x) # Constraint function

return 1.6*x**3 + 3.0*x**2 - 2.0*x + mu*c**2

xStart = 1.0

h = 0.01

x1,x2 = bracket(f,xStart,h)

x,fMin = search(f,x1,x2)

print ’’x =’’,x

print ’’f(x) =’’,fMin

raw_input (’’\nPress return to exit’’)

The result is

x = 0.27349402621

f(x) = -0.28985978555

Because the minimum was found to be a stationary point, the constraint was not
active. Therefore, the penalty function was superfluous, but we did not know that at
the beginning.

The locations of stationary points are obtained analytically by solving

f ′(x) = 4.8x2 + 6x − 2 = 0

The positive root of this equation is x = 0.273 49 4. As this is the only positive root,
there are no other stationary points in x ≥ 0 that we must check out. The only other
possible location of a minimum is the constraint boundary x = 0. But here f (0) = 0
is larger than the function at the stationary point, leading to the conclusion that the
global minimum occurs at x = 0.273 49 4.

EXAMPLE 10.2
The trapezoid shown is the cross section of a beam. It is formed by removing the top
from a triangle of base B = 48 mm and height H = 60 mm. The problem is to find the
height y of the trapezoid that maximizes the section modulus

S = Ix̄/c

where Ix̄ is the second moment of the cross-sectional area about the axis that passes
through the centroid C of the cross section. By optimizing the section modulus, we
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381 10.2 Minimization along a Line
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minimize the maximum bending stress σ max = M/S in the beam, M being the bend-
ing moment.

Solution Considering the area of the trapezoid as a composite of a rectangle and two
triangles, the section modulus is found through the following sequence of computa-
tions:

Base of rectangle a = B (H − y) /H

Base of triangle b = (B − a) /2

Area A = (B + a) y/2

First moment of area about x-axis Qx = (ay) y/2 + 2
(
by/2

)
y/3

Location of centroid d = Qx/A

Distance involved in S c = y − d

Second moment of area about x-axis Ix = ay3/3 + 2
(
by3/12

)
Parallel axis theorem Ix̄ = Ix − Ad2

Section modulus S = Ix̄/c

We could use the formulas in the table to derive S as an explicit function of y , but
that would involve a lot of error-prone algebra and result in an overly complicated
expression. It makes more sense to let the computer do the work.

The program we used and its output are listed next. As we wish to maximize S
with a minimization algorithm, the merit function is −S. There are no constraints in
this problem.

#!/usr/bin/python

## example10_2

from goldSearch import *

def f(y):

B = 48.0

H = 60.0

a = B*(H - y)/H
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382 Introduction to Optimization

b = (B - a)/2.0

A = (B + a)*y/2.0

Q = (a*y**2)/2.0 + (b*y**2)/3.0

d = Q/A

c = y - d

I = (a*y**3)/3.0 + (b*y**3)/6.0

Ibar = I - A*d**2

return -Ibar/c

yStart = 60.0 # Starting value of y

h = 1.0 # Size of first step used in bracketing

a,b = bracket(f,yStart,h)

yOpt,fOpt = search(f,a,b)

print ’’Optimal y =’’,yOpt

print ’’Optimal S =’’,-fOpt

print ’’S of triangle =’’,-f(60.0)

raw_input(’’Press return to exit’’)

Optimal y = 52.1762738732

Optimal S = 7864.43094136

S of triangle = 7200.0

The printout includes the section modulus of the original triangle. The optimal
section shows a 9.2% improvement over the triangle.

10.3 Powell’s Method

Introduction

We now look at optimization in n-dimensional design space. The objective is to min-
imize F (x), where the components of x are the n independent design variables. One
way to tackle the problem is to use a succession of one-dimensional minimizations
to close in on the optimal point. The basic strategy is

• Choose a point x0 in the design space.
• Loop with i = 1, 2, 3, . . .

Choose a vector vi .

Minimize F (x) along the line through xi−1 in the direction of vi . Let the mini-
mum point be xi .

if |xi − xi−1| < ε exit loop

xi ← xi+1

• end loop
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383 10.3 Powell’s Method

The minimization along a line can be accomplished with any one-dimensional
optimization algorithm (such as the golden section search). The only question left
open is how to choose the vectors vi .

Conjugate Directions

Consider the quadratic function

F (x) = c −
∑

i

bi xi + 1
2

∑
i

∑
j

Aij xi xj

= c − bT x + 1
2

xT Ax (10.5)

Differentiation with respect to xi yields

∂ F
∂xi

= −bi +
∑

j

Aij xj

which can be written in vector notation as

∇F = −b + Ax (10.6)

where ∇F is called the gradient of F .
Now consider the change in the gradient as we move from point x0 in the direc-

tion of a vector u. The motion takes place along the line

x = x0 + su

where s is the distance moved. Substitution into Eq. (10.6) yields the expression for
the gradient at x:

∇F |x0+su = −b + A (x0 + su) = ∇F |x0
+ s Au

Note that the change in the gradient is s Au. If this change is perpendicular to a vector
v, that is, if

vT Au = 0 (10.7)

the directions of u and v are said to be mutually conjugate (noninterfering). The im-
plication is that once we have minimized F (x) in the direction of v, we can move
along u without ruining the previous minimization.

For a quadratic function of n independent variables it is possible to construct
n mutually conjugate directions. Therefore, it would take precisely n line mini-
mizations along these directions to reach the minimum point. If F (x) is not a
quadratic function, Eq. (10.5) can be treated as a local approximation of the merit
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384 Introduction to Optimization

function, obtained by truncating the Taylor series expansion of F (x) about x0 (see
Appendix A1):

F (x) ≈ F (x0) + ∇F (x0)(x − x0) + 1
2

(x − x0)T H(x0)(x − x0)

Now the conjugate directions based on the quadratic form are only approximations,
valid in the close vicinity of x0. Consequently, it would take several cycles of n line
minimizations to reach the optimal point.

The various conjugate gradient methods use different techniques for construct-
ing conjugate directions. The zero-order methods work with F (x) only, whereas the
first-order methods utilize both F (x) and ∇F . The first-order methods are computa-
tionally more efficient, of course, but the input of ∇F , if it is available at all, can be
very tedious.

Powell’s Algorithm

Powell’s method is a zero-order method, requiring the evaluation of F (x) only. The
basic algorithm is

• Choose a point x0 in the design space.
• Choose the starting vectors vi , 1, 2, . . . , n (the usual choice is vi = ei , where ei is

the unit vector in the xi -coordinate direction).
• cycle

do with i = 1, 2, . . . , n
Minimize F (x) along the line through xi−1 in the direction of vi . Let the

minimum point be xi .

end do

vn+1 ← x0 − xn

Minimize F (x) along the line through x0 in the direction of vn+1. Let the mini-
mum point be xn+1.

if |xn+1 − x0| < ε exit loop

do with i = 1, 2, . . . , n
vi ← vi+1 (v1 is discarded, the other vectors are reused)

end do

• end cycle

Powell demonstrated that the vectors vn+1 produced in successive cycles are mu-
tually conjugate, so that the minimum point of a quadratic surface is reached in pre-
cisely n cycles. In practice, the merit function is seldom quadratic, but as long as it can
be approximated locally by Eq. (10.5), Powell’s method will work. Of course, it usually
takes more than n cycles to arrive at the minimum of a nonquadratic function. Note
that it takes n line minimizations to construct each conjugate direction.
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385 10.3 Powell’s Method
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Figure 10.3. The method of Powell

Figure 10.3(a) illustrates one typical cycle of the method in a two-dimensional
design space (n = 2). We start with point x0 and vectors v1 and v2. Then we find the
distance s1 that minimizes F (x0 + sv1), finishing up at point x1 = x0 + s1v1. Next, we
determine s2 that minimizes F (x1 + sv2), which takes us to x2 = x1 + s2v2. The last
search direction is v3 = x2 − x0. After finding s3 by minimizing F (x0 + sv3), we get to
x3 = x0 + s3v3, completing the cycle.

Figure 10.3(b) shows the moves carried out in two cycles superimposed on the
contour map of a quadratic surface. As explained before, the first cycle starts at point
P0 and ends up at P3. The second cycle takes us to P6, which is the optimal point. The
directions P0 P3 and P3 P6 are mutually conjugate.

Powell’s method does have a major flaw that has to be remedied – if F (x) is not
a quadratic, the algorithm tends to produce search directions that gradually become
linearly dependent, thereby ruining the progress toward the minimum. The source
of the problem is the automatic discarding of v1 at the end of each cycle. It has been
suggested that it is better to throw out the direction that resulted in the largest de-
crease of F (x), a policy that we adopt. It seems counterintuitive to discard the best
direction, but it is likely to be close to the direction added in the next cycle, thereby
contributing to linear dependence. As a result of the change, the search directions
cease to be mutually conjugate, so that a quadratic form is not minimized in n cy-
cles any more. This is not a significant loss because in practice F (x) is seldom a
quadratic.

Powell suggested a few other refinements to speed up convergence. Because they
complicate the book keeping considerably, we did not implement them.

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:49 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.012

Cambridge Books Online © Cambridge University Press, 2016



386 Introduction to Optimization

� powell

The algorithm for Powell’s method is listed here. It utilizes two arrays: df contains the
decreases of the merit function in the first n moves of a cycle, and the matrix u stores
the corresponding direction vectors vi (one vector per row).

## module powell

’’’ xMin,nCyc = powell(F,x,h=0.1,tol=1.0e-6)

Powell’s method of minimizing user-supplied function F(x).

x = starting point

h = initial search increment used in ’bracket’

xMin = mimimum point

nCyc = number of cycles

’’’

from numpy import identity,array,dot,zeros,argmax

from goldSearch import *

from math import sqrt

def powell(F,x,h=0.1,tol=1.0e-6):

def f(s): return F(x + s*v) # F in direction of v

n = len(x) # Number of design variables

df = zeros(n) # Decreases of F stored here

u = identity(n) # Vectors v stored here by rows

for j in range(30): # Allow for 30 cycles:

xOld = x.copy() # Save starting point

fOld = F(xOld)

# First n line searches record decreases of F

for i in range(n):

v = u[i]

a,b = bracket(f,0.0,h)

s,fMin = search(f,a,

df[i] = fOld - fMin

fOld = fMin

x = x + s*v

# Last line search in the cycle

v = x - xOld

a,b = bracket(f,0.0,h)

s,fLast = search(f,a,b)

x = x + s*v

# Check for convergence

if sqrt(dot(x-xOld,x-xOld)/n) < tol: return x,j+1

# Identify biggest decrease & update search directions

iMax = argmax(df)
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387 10.3 Powell’s Method

for i in range(iMax,n-1):

u[i] = u[i+1]

u[n-1] = v

print "Powell did not converge"

EXAMPLE 10.3
Find the minimum of the function2

F = 100(y − x2)2 + (1 − x)2

with Powell’s method starting at the point (−1, 1). This function has an interesting
topology. The minimum value of F occurs at the point (1, 1). As seen in the figure,
there is a hump between the starting and minimum points that the algorithm must
negotiate.

0

1000

0 1
y

500

0

1

z

x-1-1

Solution The program that solves this unconstrained optimization problem is

#!/usr/bin/python

## example10_3

from powell import *

from numpy import array

def F(x): return 100.0*(x[1] - x[0]**2)**2 + (1 - x[0])**2

xStart = array([-1.0, 1.0])

xMin,nIter = powell(F,xStart)

2 From T. E. Shoup and F. Mistree, Optimization Methods with Applications for Personal Computers
(Prentice-Hall, 1987).
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388 Introduction to Optimization

print ’’x =’’,xMin

print ’’F(x) =’’,F(xMin)

print ’’Number of cycles =’’,nIter

raw_input (’’Press return to exit’’)

As seen in the printout, the minimum point was obtained after 12 cycles.

x = [ 1. 1.]

F(x) = 3.71750701585e-029

Number of cycles = 12

Press return to exit

EXAMPLE 10.4
Use powell to determine the smallest distance from the point (5, 8) to the curve
xy = 5.

Solution This is a constrained optimization problem: minimize F (x, y) = (x − 5)2 +
(y − 8)2 (the square of the distance) subject to the equality constraint xy − 5 = 0. The
following program uses Powell’s method with penalty function:

#!/usr/bin/python

## example10_4

from powell import *

from numpy import array

from math import sqrt

def F(x):

mu = 1.0 # Penalty multiplier

c = x[0]*x[1] - 5.0 # Constraint equation

return distSq(x) + mu*c**2 # Penalized merit function

def distSq(x): return (x[0] - 5)**2 + (x[1] - 8)**2

xStart = array([1.0, 5.0])

x,numIter = powell(F,xStart,0.01)

print ’’Intersection point =’’,x

print ’’Minimum distance =’’, sqrt(distSq(x))

print ’’xy =’’, x[0]*x[1]

print ’’Number of cycles =’’,numIter

raw_input (’’Press return to exit’’)

As mentioned before, the value of the penalty function multiplier µ (called mu in
the program) can have profound effect on the result. We chose µ = 1 (as in the pro-
gram listing) with the following result:

Intersection point = [ 0.73306761 7.58776385]

Minimum distance = 4.28679958767
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389 10.3 Powell’s Method

xy = 5.56234387462

Number of cycles = 5

The small value of µ favored speed of convergence over accuracy. Because the
violation of the constraint xy = 5 is clearly unacceptable, we ran the program again
with µ = 10 000 and changed the starting point to (0.73306761, 7.58776385), the end
point of the first run. The results shown next are now acceptable:

Intersection point = [ 0.65561311 7.62653592]

Minimum distance = 4.36040970945

xy = 5.00005696357

Number of cycles = 5

Could we have used µ = 10 000 in the first run? In this case, we would be lucky
and obtain the minimum in 17 cycles. Hence, we save seven cycles by using two runs.
However, a large µ often causes the algorithm to hang up, so that it is generally wise
to start with a small µ.

Check
Because we have an equality constraint, the optimal point can readily be found by
calculus. The function in Eq. (10.2a) is (here λ is the Lagrangian multiplier)

F ∗(x, y , λ) = (x − 5)2 + (y − 8)2 + λ(xy − 5)

so that Eqs. (10.2b) become

∂ F ∗

∂x
= 2(x − 5) + λy = 0

∂ F ∗

∂y
= 2(y − 8) + λx = 0

g(x) = xy − 5 = 0

which can be solved with the Newton–Raphson method (the function newtonRaph-

son2 in Section 4.6). In the following program we used the notation x =
[

x y λ

]T
.

## example10_4_check

from numpy import array

from newtonRaphson2 import *

def F(x):

return array([2.0*(x[0] - 5.0) + x[2]*x[1], \

2.0*(x[1] - 8.0) + x[2]*x[0], \

x[0]*x[1] - 5.0])

xStart = array([1.0, 5.0, 1.0])

print "x = ", newtonRaphson2(F,xStart)

raw_input (’’Press return to exit’’)
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390 Introduction to Optimization

The result is

x = [ 0.6556053 7.62653992 1.13928328]

EXAMPLE 10.5

P

L

L
u1

u2

u3

1

2

3

The displacement formulation of the truss shown results in the following simul-
taneous equations for the joint displacements u:

E

2
√

2L

⎡
⎢⎣2

√
2A 2 + A 3 −A 3 A 3

−A 3 A 3 −A 3

A 3 −A 3 2
√

2A 1 + A 3

⎤
⎥⎦
⎡
⎢⎣u1

u2

u3

⎤
⎥⎦ =

⎡
⎢⎣ 0

−P
0

⎤
⎥⎦

where E represents the modulus of elasticity of the material and Ai is the cross-
sectional area of member i. Use Powell’s method to minimize the structural volume
(i.e., the weight) of the truss while keeping the displacement u2 below a given value δ.

Solution Introducing the dimensionless variables

vi = ui

δ
xi = Eδ

P L
Ai

the equations become

1

2
√

2

⎡
⎢⎣2

√
2x2 + x3 −x3 x3

−x3 x3 −x3

x3 −x3 2
√

2x1 + x3

⎤
⎥⎦
⎡
⎢⎣v1

v2

v3

⎤
⎥⎦ =

⎡
⎢⎣ 0

−1
0

⎤
⎥⎦ (a)

The structural volume to be minimized is

V = L(A 1 + A 2 +
√

2A 3) = P L2

Eδ
(x1 + x2 +

√
2x3)

In addition to the displacement constraint |u2| ≤ δ, we should also prevent the cross-
sectional areas from becoming negative by applying the constraints Ai ≥ 0. Thus, the
optimization problem becomes: Minimize

F = x1 + x2 +
√

2x3
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391 10.3 Powell’s Method

with the inequality constraints

|v2| ≤ 1 xi ≥ 0 (i = 1, 2, 3)

Note that in order to obtain v2 we must solve Eqs. (a).
Here is the program:

#!/usr/bin/python

## example10_5

from powell import *

from numpy import array

from math import sqrt

from gaussElimin import *

def F(x):

global v, weight

mu = 100.0

c = 2.0*sqrt(2.0)

A = array([[c*x[1] + x[2], -x[2], x[2]], \

[-x[2], x[2], -x[2]], \

[ x[2], -x[2], c*x[0] + x[2]]])/c

b = array([0.0, -1.0, 0.0])

v = gaussElimin(A,b)

weight = x[0] + x[1] + sqrt(2.0)*x[2]

penalty = max(0.0,abs(v[1]) - 1.0)**2 \

+ max(0.0,-x[0])**2 \

+ max(0.0,-x[1])**2 \

+ max(0.0,-x[2])**2

return weight + penalty*mu

xStart = array([1.0, 1.0, 1.0])

x,numIter = powell(F,xStart)

print "x = ",x

print "v = ",v

print "Relative weight F = ",weight

print "Number of cycles = ",numIter

raw_input ("Press return to exit")

The first run of the program started with x =
[

1 1 1
]T

and used µ = 100 for
the penalty multiplier. The results were

x = [ 3.73870376 3.73870366 5.28732564]

v = [-0.26747239 -1.06988953 -0.26747238]

Relative weight F = 14.9548150471

Number of cycles = 10
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392 Introduction to Optimization

Because the magnitude of v2 is excessive, the penalty multiplier was increased to
10,000 and the program run again using the output x from the last run as the input.
As seen next, v2 is now much closer to the constraint value.

x = [ 3.99680758 3.9968077 5.65233961]

v = [-0.25019968 -1.00079872 -0.25019969]

Relative weight F = 15.9872306185

Number of cycles = 11

In this problem, the use of µ = 10,000 at the outset would not work. You are in-
vited to try it.

10.4 Downhill Simplex Method

The downhill simplex method is also known as the Nelder–Mead method. The idea
is to employ a moving simplex in the design space to surround the optimal point
and then shrink the simplex until its dimensions reach a specified error tolerance.
In n-dimensional space, a simplex is a figure of n + 1 vertices connected by straight
lines and bounded by polygonal faces. If n = 2, a simplex is a triangle; if n = 3, it is a
tetrahedron.

The allowed moves of the simplex are illustrated in Fig. 10.4 for n = 2. By applying
these moves in a suitable sequence, the simplex can always hunt down the minimum
point, enclose it, and then shrink around it. The direction of a move is determined by
the values of F (x) (the function to be minimized) at the vertices. The vertex with the
highest value of F is labeled Hi, and Lo denotes the vertex with the lowest value. The

Hi

d

Hi

2d

Hi

3d

Hi
0.5d

Lo

Original simplex

Reflection

Expansion

Contraction Shrinkage
Figure 10.4. A simplex in two dimensions illustrating the allowed moves.
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393 10.4 Downhill Simplex Method

magnitude of a move is controlled by the distance d measured from the Hi vertex
to the centroid of the opposing face (in the case of the triangle, the middle of the
opposing side).

The outline of the algorithm is:

• Choose a starting simplex.
• Cycle until d ≤ ε (ε being the error tolerance)

– Try reflection.

∗ If the new vertex is lower than previous Hi, accept reflection.
∗ If the new vertex is lower than previous Lo, try expansion.
∗ If the new vertex is lower than previous Lo, accept expansion.
∗ If reflection is accepted, start next cycle.

– Try contraction.

∗ If the new vertex is lower than Hi, accept contraction and start next cycle.

– Shrinkage.

• end cycle

The downhill simplex algorithm is much slower than Powell’s method in most
cases, but makes up for it in robustness. It often works in problems where Powell’s
method hangs up.

� downhill

The implementation of the downhill simplex method is given here. The starting sim-
plex has one of its vertices at x0 and the others at x0 + eib (i = 1, 2, . . . , n), where ei is
the unit vector in the direction of the xi -coordinate. The vector x0 (called xStart in
the program) and the edge length b of the simplex are input by the user.

## module downhill

’’’ x = downhill(F,xStart,side=0.1,tol=1.0e-6)

Downhill simplex method for minimizing the user-supplied

scalar function F(x) with respect to the vector x.

xStart = starting vector x.

side = side length of the starting simplex (default = 0.1).

’’’

from numpy import zeros,dot,argmax,argmin,sum

from math import sqrt

def downhill(F,xStart,side,tol=1.0e-6):

n = len(xStart) # Number of variables

x = zeros((n+1,n))

f = zeros(n+1)

# Generate starting simplex

x[0] = xStart
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394 Introduction to Optimization

for i in range(1,n+1):

x[i] = xStart

x[i,i-1] = xStart[i-1] + side

# Compute values of F at the vertices of the simplex

for i in range(n+1): f[i] = F(x[i])

# Main loop

for k in range(500):

# Find highest and lowest vertices

iLo = argmin(f)

iHi = argmax(f)

# Compute the move vector d

d = (-(n+1)*x[iHi] + sum(x))/n

# Check for convergence

if sqrt(dot(d,d)/n) < tol: return x[iLo]

# Try reflection

xNew = x[iHi] + 2.0*d

fNew = F(xNew)

if fNew <= f[iLo]: # Accept reflection

x[iHi] = xNew

f[iHi] = fNew

# Try expanding the reflection

xNew = x[iHi] + d

fNew = F(xNew)

if fNew <= f[iLo]: # Accept expansion

x[iHi] = xNew

f[iHi] = fNew

else:

# Try reflection again

if fNew <= f[iHi]: # Accept reflection

x[iHi] = xNew

f[iHi] = fNew

else:

# Try contraction

xNew = x[iHi] + 0.5*d

fNew = F(xNew)

if fNew <= f[iHi]: # Accept contraction

x[iHi] = xNew

f[iHi] = fNew

else:

# Use shrinkage

for i in range(len(x)):

if i != iLo:
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395 10.4 Downhill Simplex Method

x[i] = (x[i] - x[iLo])

f[i] = F(x[i])

print "Too many iterations in downhill"

print "Last values of x were"

return x[iLo]

EXAMPLE 10.6
Use the downhill simplex method to minimize

F = 10x2
1 + 3x2

2 − 10x1x2 + 2x1

The coordinates of the vertices of the starting simplex are (0, 0), (0, −0.2), and (0.2, 0).
Show graphically the first four moves of the simplex.

Solution The figure shows the design space (the x1-x2 plane). The numbers in the
figure are the values of F at the vertices. The move numbers are enclosed in circles.
The starting move (move 1) is a reflection, followed by an expansion (move 2). The
next two moves are reflections. At this stage, the simplex is still moving downhill.
Contraction will not start until move 8, when the simplex has surrounded the optimal
point at (−0.6, −1.0).

0.12

00

-0.28

-0.4-0.02

2

4

3

1

0.2

0

-0.2

-0.4

-0.2-0.4-0.6 0

-0.6

-0.8-0.48

EXAMPLE 10.7

b

hθ θ
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396 Introduction to Optimization

The figure shows the cross section of a channel carrying water. Use the downhill
simplex to determine h, b, and θ that minimize the length of the wetted perimeter
while maintaining a cross-sectional area of 8 m2. (Minimizing the wetted perimeter
results in least resistance to the flow.) Check the answer by calculus.

Solution The cross-sectional area of the channel is

A = 1
2

[
b + (b + 2h tan θ)

]
h = (b + h tan θ)h

and the length of the wetted perimeter is

S = b + 2(h sec θ)

The optimization problem is to minimize S subject to the constraint A − 8 = 0. Us-
ing the penalty function to take care of the equality constraint, the function to be
minimized is

S∗ = b + 2h sec θ + µ
[
(b + h tan θ)h − 8

]2
Letting x =

[
b h θ

]T
and starting with x0 =

[
4 2 0

]T
, we arrive at the fol-

lowing program:

#!/usr/bin/python

## example10_7

from numpy import array

from math import cos,tan,pi

from downhill import *

def S(x):

global perimeter,area

mu = 10000.0

perimeter = x[0] + 2.0*x[1]/cos(x[2])

area = (x[0] + x[1]*tan(x[2]))*x[1]

return perimeter + mu*(area - 8.0)**2

xStart = array([4.0, 2.0, 0.0])

x = downhill(S,xStart)

area = (x[0] + x[1]*tan(x[2]))*x[1]

print "b = ",x[0]

print "h = ",x[1]

print "theta (deg) = ",x[2]*180.0/pi

print "area = ",area

print "perimeter = ",perimeter

raw_input("Finished. Press return to exit")
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397 10.4 Downhill Simplex Method

The results are

b = 2.4816069148

h = 2.14913738694

theta (deg) = 30.0000185796

area = 7.99997671775

perimeter = 7.44482803952

Check
Because we have an equality constraint, the problem can be solved by calculus with
help from a Lagrangian multiplier. Referring to Eqs. (10.2a), we have F = S and g =
A − 8, so that

F ∗ = S + λ(A − 8)

= b + 2(h sec θ) + λ
[
(b + h tan θ)h − 8

]
Therefore, Eqs. (10.2b) become

∂ F ∗

∂b
= 1 + λh = 0

∂ F ∗

∂h
= 2 sec θ + λ(b + 2h tan θ) = 0

∂ F ∗

∂θ
= 2h sec θ tan θ + λh2 sec2 θ = 0

g = (b + h tan θ)h − 8 = 0

which can be solved with newtonRaphson2 as shown next.

#!/usr/bin/python

## example10_7_check

from numpy import array,zeros

from math import tan,cos

from newtonRaphson2 import *

def f(x):

f = zeros(4)

f[0] = 1.0 + x[3]*x[1]

f[1] = 2.0/cos(x[2]) + x[3]*(x[0] + 2.0*x[1]*tan(x[2]))

f[2] = 2.0*x[1]*tan(x[2])/cos(x[2]) + x[3]*(x[1]/cos(x[2]))**2

f[3] = (x[0] + x[1]*tan(x[2]))*x[1] - 8.0

return f

xStart = array([3.0, 2.0, 0.0, 1.0])

print "x =",newtonRaphson2(f,xStart)

raw_input ("Press return to exit")

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:49 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.012

Cambridge Books Online © Cambridge University Press, 2016



398 Introduction to Optimization

The solution x =
[

b h θ λ

]T
is

x = [ 2.48161296 2.14913986 0.52359878 -0.46530243]

EXAMPLE 10.8

d1

d2

L L
θ1 θ2

The fundamental circular frequency of the stepped shaft is required to be higher
than ω0 (a given value). Use the downhill simplex to determine the diameters d1 and
d2 that minimize the volume of the material without violating the frequency con-
straint. The approximate value of the fundamental frequency can be computed by
solving the eigenvalue problem (obtainable from the finite element approximation)[

4(d4
1 + d4

2 ) 2d4
2

2d4
2 4d4

2

][
θ1

θ2

]
= 4γ L4ω2

105E

[
4(d2

1 + d2
2 ) −3d2

2

−3d2
2 4d2

2

][
θ1

θ2

]

where

γ = mass density of the material

ω = circular frequency

E = modulus of elasticity

θ1, θ2 = rotations at the simple supports

Solution We start by introducing the dimensionless variables xi = di/d0, where d0 is
an arbitrary “base” diameter. As a result, the eigenvalue problem becomes[

4(x4
1 + x4

2 ) 2x4
2

2x4
2 4x4

2

][
θ1

θ2

]
= λ

[
4(x2

1 + x2
2 ) −3x2

2

−3x2
2 4x2

2

][
θ1

θ2

]
(a)

where

λ = 4γ L4ω2

105Ed2
0

In the program listed next we assume that the constraint on the frequency ω is equiv-
alent to λ ≥ 0.4.

## example10_8

from numpy import array

from stdForm import *

from inversePower import *

from downhill import *
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399 10.4 Downhill Simplex Method

def F(x):

global eVal

mu = 1.0e6

eVal_min = 0.4

A = array([[4.0*(x[0]**4 + x[1]**4), 2.0*x[1]**4], \

[2.0*x[1]**4, 4.0*x[1]**4]])

B = array([[4.0*(x[0]**2 + x[1]**2), -3.0*x[1]**2], \

[-3*x[1]**2, 4.0*x[1]**2]])

H,t = stdForm(A,B)

eVal,eVec = inversePower(H,0.0)

return x[0]**2 + x[1]**2 + mu*(max(0.0,eVal_min - eVal))**2

xStart = array([1.0,1.0])

x = downhill(F,xStart,0.1)

print "x = ", x

print "eigenvalue = ",eVal

raw_input ("Press return to exit")

Although a 2 × 2 eigenvalue problem can be solved easily, we avoid the work in-
volved by employing functions that have been already prepared – stdForm to turn
the eigenvalue problem into standard form, and inversePower to compute the
eigenvalue closest to zero.

The results shown here were obtained with x1 = x2 = 1 as the starting values
and 106 for the penalty multiplier. The downhill simplex method is robust enough to
alleviate the need for multiple runs with increasing penalty multiplier.

x = [ 1.07512696 0.79924677]

eigenvalue = 0.399997757238

PROBLEM SET 10.1

1. � The Lennard–Jones potential between two molecules is

V = 4ε

[(σ

r

)12
−
(σ

r

)6
]

where ε and σ are constants, and r is the distance between the molecules. Use
the module goldSearch to find σ/r that minimizes the potential, and verify the
result analytically.

2. � One wave function of the hydrogen atom is

ψ = C
(
27 − 18σ + 2σ 2) e−σ/3
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400 Introduction to Optimization

where

σ = zr/a0

C = 1

81
√

3π

(
z

a0

)2/3

z = nuclear charge

a0 = Bohr radius

r = radial distance

Find σ where ψ is at a minimum. Verify the result analytically.
3. � Determine the parameter p that minimizes the integral∫ π

0
sin x cos px dx

Hint: use numerical quadrature to evaluate the integral.
4. �

R R

E
i

i

1

2i1

i2
R R

RR1 2

3 4

5

= 2Ω = 3.6Ω

= 1.2Ω

= 1.8Ω

= 120 V

= 1.5Ω

Kirchoff’s equations for the two loops of the electrical circuit are

R1i1 + R3i1 + R(i1 − i2) = E

R2i2 + R4i2 + R5i2 + R(i2 − i1) = 0

Find the resistance R that maximizes the power dissipated by R. Hint: Solve Kir-
choff’s equations numerically with one of the functions in Chapter 2.

5. �

T

a
r

T

A wire carrying an electric current is surrounded by rubber insulation of outer
radius r . The resistance of the wire generates heat, which is conducted through
the insulation and convected into the surrounding air. The temperature of the

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:49 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.012

Cambridge Books Online © Cambridge University Press, 2016



401 10.4 Downhill Simplex Method

wire can be shown to be

T = q
2π

(
ln(r/a)

k
+ 1

hr

)
+ T∞

where

q = rate of heat generation in wire = 50 W/m

a = radius of wire = 5 mm

k = thermal conductivity of rubber = 0.16 W/m · K

h = convective heat-transfer coefficient = 20 W/m2 · K

T∞ = ambient temperature = 280 K

Find r that minimizes T .
6. � Minimize the function

F (x, y) = (x − 1)2 + (y − 1)2

subject to the constraints x + y ≥ 1 and x ≥ 0.6.
7. � Find the minimum of the function

F (x, y) = 6x2 + y3 + xy

in y ≥ 0. Verify the result analytically.
8. � Solve Prob. 7 if the constraint is changed to y ≥ −2.
9. � Determine the smallest distance from the point (1, 2) to the parabola y = x2.

10. �

C

x

d
0.4 m

0.4 m

0.2 m

Determine x that minimizes the distance d between the base of the area shown
and its centroid C .
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402 Introduction to Optimization

11. �

0.43H

r

H
x

C

The cylindrical vessel of mass M has its center of gravity at C . The water in the
vessel has a depth x. Determine x so that the center of gravity of the vessel–water
combination is as low as possible. Use M = 115 kg, H = 0.8 m, and r = 0.25 m.

12. �

b

b
a

a

The sheet of cardboard is folded along the dashed lines to form a box with an
open top. If the volume of the box is to be 1.0 m3, determine the dimensions a
and b that would use the least amount of cardboard. Verify the result analytically.

13. �
a b

P
u

v

A B C

B'

The elastic cord A BC has an extensional stiffness k. When the vertical force P is
applied at B, the cord deforms to the shape A B ′C . The potential energy of the
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403 10.4 Downhill Simplex Method

system in the deformed position is

V = −Pv + k(a + b)
2a

δA B + k(a + b)
2b

δBC

where

δA B =
√

(a + u)2 + v2 − a

δBC =
√

(b − u)2 + v2 − b

are the elongations of A B and BC . Determine the displacements u and v by min-
imizing V (this is an application of the principle of minimum potential energy: a
system is in stable equilibrium if its potential energy is at minimum). Use a = 150
mm, b = 50 mm, k = 0.6 N/mm, and P = 5 N.

14. �

θθ
b = 4 m

P = 50 kN

Each member of the truss has a cross-sectional area A . Find A and the angle θ

that minimize the volume

V = bA
cos θ

of the material in the truss without violating the constraints

σ ≤ 150 MPa δ ≤ 5 mm

where

σ = P
2A sin θ

= stress in each member

δ = Pb
2EA sin 2θ sin θ

= displacement at the load P

and E = 200 × 109.
15. � Solve Prob. 14 if the allowable displacement is changed to 2.5 mm.
16. � r r

L = 1.0 m

1 2

L = 1.0 m
P = 10 kN

The cantilever beam of circular cross section is to have the smallest volume pos-
sible subject to constraints

σ 1 ≤ 180 MPa σ 2 ≤ 180 MPa δ ≤ 25 mm
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404 Introduction to Optimization

where

σ 1 = 8P L

πr 3
1

= maximum stress in left half

σ 2 = 4P L

πr 3
2

= maximum stress in right half

δ = P L3

3π E

(
7

r 4
1

+ 1

r 4
2

)
= displacement at free end

and E = 200 GPa. Determine r1 and r2.
17. � Find the minimum of the function

F (x, y , z) = 2x2 + 3y2 + z2 + xy + xz − 2y

and confirm the result analytically.
18. �

r

h

b

The cylindrical container has a conical bottom and an open top. If the volume V
of the container is to be 1.0 m3, find the dimensions r , h, and b that minimize the
surface area S. Note that

V = πr 2
(

b
3

+ h
)

S = πr
(

2h +
√

b2 + r 2
)

19. �
3 m

4 m

P = 200 kN

P = 200 kN

12

3

The equilibrium equations of the truss shown are

σ 1A 1 + 4
5
σ 2A 2 = P

3
5
σ 2A 2 + σ 3A 3 = P
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405 10.4 Downhill Simplex Method

where σ i is the axial stress in member i and Ai are the cross-sectional areas. The
third equation is supplied by compatibility (geometrical constraints on the elon-
gations of the members):

16
5

σ 1 − 5σ 2 + 9
5
σ 3 = 0

Find the cross-sectional areas of the members that minimize the weight of the
truss without the stresses exceeding 150 MPa.

20. � B

H

θ1

θ2

θ3

1
y

y2

L1

2L

3L

W1

W2

A cable supported at the ends carries the weights W1 and W2. The potential en-
ergy of the system is

V = −W1y1 − W2y2

= −W1 L1 sin θ1 − W2(L1 sin θ1 + L2 sin θ2)

and the geometric constraints are

L1 cos θ1 + L2 cos θ2 + L3 cos θ3 = B

L1 sin θ1 + L2 sin θ2 + L3 sin θ3 = H

The principle of minimum potential energy states that the equilibrium configu-
ration of the system is the one that satisfies geometric constraints and minimizes
the potential energy. Determine the equilibrium values of θ1, θ2, and θ3 given that
L1 = 1.2 m, L2 = 1.5 m, L3 = 1.0 m, B = 3.5 m, H = 0, W1 = 20 kN, and W2 = 30
kN.

21. � 2P
P

L L

30o 30o

uv

1 2 3

The displacement formulation of the truss results in the equations

E
4L

[
3A 1 + 3A 3

√
3A 1 + √

3A 3√
3A 1 + √

3A 3 A 1 + 8A 2 + A 3

][
u
v

]
=
[

P
2P

]
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406 Introduction to Optimization

where E is the modulus of elasticity, Ai is the cross-sectional area of member i,
and u, v are the displacement components of the loaded joint. Letting A 1 = A 3 (a
symmetric truss), determine the cross-sectional areas that minimize the struc-
tural volume without violating the constraints u ≤ δ and v ≤ δ. Hint: nondimen-
sionalize the problem as in Example 10.5.

22. � Solve Prob. 21 if the three cross-sectional areas are independent.
23. � A beam of rectangular cross section is cut from a cylindrical log of diameter

d. Calculate the height h and the width b of the cross section that maximizes the
cross-sectional moment of inertia I = bh3/12. Check the result by calculus.

10.5 Other Methods

Simulated annealing methods have been successfully employed for complex prob-
lems involving many design variables. These methods are based on an analogy with
the annealing as a slowly cooled liquid metal solidifies into a crystalline, minimum
energy structure. One distinguishing feature of simulated annealing is its ability to
pass over local minima in its search for the global minimum.

A topic that we reluctantly omitted is the simplex method of linear programming.
Linear programming deals with optimization problems where the merit function and
the constraints are linear expressions of the independent variables. The general lin-
ear programming problem is to minimize the objective function

F =
n∑

i=1

ai xi

subject to the constraints

n∑
j=1

Bij xj ≤ bi , i = 1, 2, . . . , m1

n∑
j=1

Cij xj ≥ ci , i = 1, 2, . . . , m2

n∑
j=1

Dij xj = di , i = 1, 2, . . . , m3

xi ≥ 0, i = 1, 2, . . .n

where the constants bi , ci , and di are non-negative. The roots of linear programming
lie in cost analysis, operations research and related fields. We skip this topic because
there are very few engineering applications that can be formulated as linear program-
ming problems. In addition, a fail-safe implementation of the simplex method results
in a rather complicated algorithm. This is not to say that the simplex method has no
place in nonlinear optimization. There are several effective methods that rely in part
on the simplex method. For example, problems with nonlinear constraints can often
be solved by a piecewise application of linear programming. The simplex method is
also used to compute search directions in the method of feasible directions.
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Appendices

A1 Taylor Series

Function of a Single Variable

The Taylor series expansion of a function f (x) about the point x = a is the infinite
series

f (x) = f (a) + f ′(a)(x − a) + f ′′(a)
(x − a)2

2!
+ f ′′′(a)

(x − a)3

3!
+ · · · (A1)

In the special case a = 0, the series is also known as the MacLaurin series. It can be
shown that Taylor series expansion is unique in the sense that no two functions have
identical Taylor series.

The Taylor series is meaningful only if all the derivatives of f (x) exist at x = a and
the series converges. In general, convergence occurs only if x is sufficiently close to
a , that is, if |x − a | ≤ ε, where ε is called the radius of convergence. In many cases, ε is
infinite.

Another useful form of Taylor series is the expansion about an arbitrary value
of x:

f (x + h) = f (x) + f ′(x)h + f ′′(x)
h2

2!
+ f ′′′(x)

h3

3!
+ · · · (A2)

Because it is not possible to evaluate all the terms of an infinite series, the effect of
truncating the series in Eq. (A2) is of great practical importance. Keeping the first
n + 1 terms, we have

f (x + h) = f (x) + f ′(x)h + f ′′(x)
h2

2!
+ · · · + f (n)(x)

hn

n!
+ En (A3)

where En is the truncation error (sum of the truncated terms). The bounds on the
truncation error are given by Taylor’s theorem:

En = f (n+1)(ξ )
hn+1

(n + 1)!
(A4)

where ξ is some point in the interval (x, x + h). Note that the expression for En is
identical to the first discarded term of the series, but with x replaced by ξ . Because

407
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408 Appendices

the value of ξ is undetermined (only its limits are known), the most we can get out of
Eq. (A4) are the upper and lower bounds on the truncation error.

If the expression for f (n+1)(ξ ) is not available, the information conveyed by Eq.
(A4) is reduced to

En = O(hn+1) (A5)

which is a concise way of saying that the truncation error is of the order of hn+1, or
behaves as hn+1. If h is within the radius of convergence, then

O(hn) > O(hn+1)

that is, the error is always reduced if a term is added to the truncated series (this may
not be true for the first few terms).

In the special case n = 1, Taylor’s theorem is known as the mean value theorem:

f (x + h) = f (x) + f ′(ξ )h, x ≤ ξ ≤ x + h (A6)

Function of Several Variables

If f is a function of the m variables x1, x2, . . . , xm, then its Taylor series expansion
about the point x = [x1, x2, . . . , xm]T is

f (x + h) = f (x) +
m∑

i=1

∂f
∂xi

∣∣∣∣
x

hi + 1
2!

m∑
i=1

m∑
j=1

∂2 f
∂xi∂xj

∣∣∣∣
x

hi hj + · · · (A7)

This is sometimes written as

f (x + h) = f (x) + ∇ f (x) · h + 1
2

hT H(x)h + . . . (A8)

The vector ∇ f is known as the gradient of f , and the matrix H is called the Hessian
matrix of f .

EXAMPLE A1
Derive the Taylor series expansion of f (x) = ln(x) about x = 1.

Solution The derivatives of f are

f ′(x) = 1
x

f ′′(x) = − 1
x2

f ′′′(x) = 2!
x3

f (4) = − 3!
x4

etc.

Evaluating the derivatives at x = 1, we get

f ′(1) = 1 f ′′(1) = −1 f ′′′(1) = 2! f (4)(1) = −3! etc.

which, upon substitution into Eq. (A1) together with a = 1, yields

ln(x) = 0 + (x − 1) − (x − 1)2

2!
+ 2!

(x − 1)3

3!
− 3!

(x − 1)4

4!
+ · · ·

= (x − 1) − 1
2

(x − 1)2 + 1
3

(x − 1)3 − 1
4

(x − 1)4 + · · ·
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409 A1 Taylor Series

EXAMPLE A2
Use the first five terms of the Taylor series expansion of ex about x = 0:

ex = 1 + x + x2

2!
+ x3

3!
+ x4

4!
+ · · ·

together with the error estimate to find the bounds of e.

Solution

e = 1 + 1 + 1
2

+ 1
6

+ 1
24

+ E4 = 65
24

+ E4

E4 = f (4)(ξ )
h5

5!
= eξ

5!
, 0 ≤ ξ ≤ 1

The bounds on the truncation error are

(E4)min = e0

5!
= 1

120
(E4)max = e1

5!
= e

120

Thus, the lower bound on e is

emin = 65
24

+ 1
120

= 163
60

and the upper bound is given by

emax = 65
24

+ emax

120

which yields

119
120

emax = 65
24

emax = 325
119

Therefore,

163
60

≤ e ≤ 325
119

EXAMPLE A3
Compute the gradient and the Hessian matrix of

f (x, y) = ln
√

x2 + y2

at the point x = −2, y = 1.

Solution

∂f
∂x

= 1√
x2 + y2

(
1
2

2x√
x2 + y2

)
= x

x2 + y2

∂f
∂y

= y
x2 + y2

∇ f (x, y) =
[

x/(x2 + y2) y/(x2 + y2)
]T

∇ f (−2, 1) =
[
−0.4 0.2

]T

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:49 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.012

Cambridge Books Online © Cambridge University Press, 2016



410 Appendices

∂2 f
∂x2

= (x2 + y2) − x(2x)
(x2 + y2)2

= −x2 + y2

(x2 + y2)2

∂2 f
∂y2

= x2 − y2

(x2 + y2)2

∂2 f
∂x∂y

= ∂2 f
∂y∂x

= −2xy
(x2 + y2)2

H(x, y) =
[

−x2 + y2 −2xy
−2xy x2 − y2

]
1

(x2 + y2)2

H(−2, 1) =
[

−0.12 0.16
0.16 0.12

]

A2 Matrix Algebra

A matrix is a rectangular array of numbers. The size of a matrix is determined by the
number of rows and columns, also called the dimensions of the matrix. Thus, a matrix
of m rows and n columns is said to have the size m × n (the number of rows is always
listed first). A particularly important matrix is the square matrix, which has the same
number of rows and columns.

An array of numbers arranged in a single column is called a column vector, or
simply a vector. If the numbers are set out in a row, the term row vector is used. Thus,
a column vector is a matrix of dimensions n × 1, and a row vector can be viewed as a
matrix of dimensions 1 × n.

We denote matrices by boldface, uppercase letters. For vectors we use boldface,
lowercase letters. Here are examples of the notation:

A =

⎡
⎢⎣A 11 A 12 A 13

A 21 A 22 A 23

A 31 A 32 A 33

⎤
⎥⎦ b =

⎡
⎢⎣b1

b2

b3

⎤
⎥⎦ (A9)

Indices of the elements of a matrix are displayed in the same order as its dimen-
sions: The row number comes first, followed by the column number. Only one index
is needed for the elements of a vector.

Transpose

The transpose of a matrix A is denoted by AT and defined as

A T
ij = A ji

The transpose operation thus interchanges the rows and columns of the matrix. If ap-
plied to vectors, it turns a column vector into a row vector and vice versa. For example,
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411 A2 Matrix Algebra

transposing A and b in Eq. (A9), we get

AT =

⎡
⎢⎣A 11 A 21 A 31

A 12 A 22 A 32

A 13 A 23 A 33

⎤
⎥⎦ bT =

[
b1 b2 b3

]

An n × n matrix is said to be symmetric if AT = A. This means that the elements in
the upper triangular portion (above the diagonal connecting A 11 and Ann) of a sym-
metric matrix are mirrored in the lower triangular portion.

Addition

The sum C = A + B of two m × n matrices A and B is defined as

Cij = Aij + Bij , i = 1, 2, . . . , m; j = 1, 2, . . . , n (A10)

Thus, the elements of C are obtained by adding elements of A to the elements of B.
Note that addition is defined only for matrices that have the same dimensions.

Vector Products

The dot or inner product c = a · b of the vectors a and b, each of size m, is defined as
the scalar

c =
m∑

k=1

akbk (A11)

It can also be written in the form c = aT b. In NumPy, the function for the dot product
is dot(a,b)or inner(a,b).

The outer product C = a ⊗ b is defined as the matrix

Cij = aib j (A12)

An alternative notation is C = abT . The NumPy function for the outer product is
outer(a,b).

Array Products

The matrix product C = AB of an l × m matrix A and an m × n matrix B is defined by

Cij =
m∑

k=1

Aik Bkj , i = 1, 2, . . . , l; j = 1, 2, . . . , n (A12)

The definition requires the number of columns in A (the dimension m) to be equal to
the number of rows in B. The matrix product can also be defined in terms of the dot
product. Representing the ith row of A as the vector ai and the j th column of B as the
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vector b j , we have

AB =

⎡
⎢⎢⎢⎢⎣

a1 · b1 a1 · b2 · · · a1 · bn

a2 · b1 a2 · b2 · · · a2 · bn

...
...

. . .
...

a� · b1 a� · b2 · · · a� · bn

⎤
⎥⎥⎥⎥⎦ (A13)

NumPy treats the matrix product as the dot product for arrays, so that the function
dot(A,B) returns the matrix product of A and B.

NumPy defines the inner product of matrices A and B to be C = ABT . Equation
(A13) still applies, but now b represents the j th row of B.

NumPy’s definition of the outer product of matrices A (size k × �) and B (size m ×
n) is as follows. Let ai be the ith row of A, and let b j represent the j th row of B. Then
the outer product is of A and B is

A ⊗ B =

⎡
⎢⎢⎢⎢⎣

a1 ⊗ b1 a1 ⊗ b2 · · · a1 ⊗ bm

a2 ⊗ b1 a2 ⊗ b2 · · · a2 ⊗ bm

...
...

. . .
...

ak ⊗ b1 ak ⊗ b2 · · · ak ⊗ bm

⎤
⎥⎥⎥⎥⎦ (A14)

The submatrices ai ⊗ b j are of dimensions � × n. As you can see, the size of the outer
product is much larger than either A or B.

Identity Matrix

A square matrix of special importance is the identity or unit matrix

I =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

(A15)

It has the property AI = IA = A.

Inverse

The inverse of an n × n matrix A, denoted by A−1, is defined to be an n × n matrix that
has the property

A−1A = AA−1 = I (A16)

Determinant

The determinant of a square matrix A is a scalar denoted by |A| or det(A). There is no
concise definition of the determinant for a matrix of arbitrary size. We start with the
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determinant of a 2 × 2 matrix, which is defined as∣∣∣∣∣A 11 A 12

A 21 A 22

∣∣∣∣∣ = A 11A 22 − A 12A 21 (A17)

The determinant of a 3 × 3 matrix is then defined as∣∣∣∣∣∣∣
A 11 A 12 A 13

A 21 A 22 A 23

A 31 A 32 A 33

∣∣∣∣∣∣∣ = A 11

∣∣∣∣∣A 22 A 23

A 32 A 33

∣∣∣∣∣− A 12

∣∣∣∣∣A 21 A 23

A 31 A 33

∣∣∣∣∣+ A 13

∣∣∣∣∣A 21 A 22

A 31 A 32

∣∣∣∣∣
Having established the pattern, we can now define the determinant of an n × n ma-
trix in terms of the determinant of an (n − 1) × (n − 1) matrix:

|A| =
n∑

k=1

(−1)k+1A 1k M1k (A18)

where Mik is the determinant of the (n − 1) × (n − 1) matrix obtained by deleting the
ith row and kth column of A. The term (−1)k+i Mik is called a cofactor of Aik .

Equation (A18) is known as Laplace’s development of the determinant on the
first row of A. Actually, Laplace’s development can take place on any convenient row.
Choosing the ith row, we have

|A| =
n∑

k=1

(−1)k+i Aik Mik (A19)

The matrix A is said to be singular if |A| = 0.

Positive Definiteness

An n × n matrix A is said to be positive definite if

xT Ax > 0 (A20)

for all nonvanishing vectors x. It can be shown that a matrix is positive definite if the
determinants of all its leading minors are positive. The leading minors of A are the n
square matrices ⎡

⎢⎢⎢⎢⎣
A 11 A 12 · · · A 1k

A 12 A 22 · · · A 2k

...
...

. . .
...

A k1 A k2 · · · A kk

⎤
⎥⎥⎥⎥⎦ , k = 1, 2, . . . , n

Therefore, positive definiteness requires that

A 11 > 0,

∣∣∣∣∣A 11 A 12

A 21 A 22

∣∣∣∣∣ > 0,

∣∣∣∣∣∣∣
A 11 A 12 A 13

A 21 A 22 A 23

A 31 A 32 A 33

∣∣∣∣∣∣∣ > 0, . . . , |A | > 0 (A21)
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Useful Theorems

We list without proof a few theorems that are utilized in the main body of the text.
Most proofs are easy and could be attempted as exercises in matrix algebra.

(AB)T = BT AT (A22a)

(AB)−1 = B−1A−1 (A22b)∣∣AT
∣∣ = |A| (A22c)

|AB| = |A| |B| (A22d)

if C = AT BA where B = BT , then C = CT (A22e)

EXAMPLE A4
Letting

A =

⎡
⎢⎣1 2 3

1 2 1
0 1 2

⎤
⎥⎦ u =

⎡
⎢⎣ 1

6
−2

⎤
⎥⎦ v =

⎡
⎢⎣ 8

0
−3

⎤
⎥⎦

compute u + v, u · v, Av, and uT Av.

Solution

u + v =

⎡
⎢⎣ 1 + 8

6 + 0
−2 − 3

⎤
⎥⎦ =

⎡
⎢⎣ 9

6
−5

⎤
⎥⎦

u · v = 1(8)) + 6(0) + (−2)(−3) = 14

Av =

⎡
⎢⎣a1·v

a2·v
a3·v

⎤
⎥⎦ =

⎡
⎢⎣1(8) + 2(0) + 3(−3)

1(8) + 2(0) + 1(−3)
0(8) + 1(0) + 2(−3)

⎤
⎥⎦ =

⎡
⎢⎣−1

5
−6

⎤
⎥⎦

uT Av = u · (Av) = 1(−1) + 6(5) + (−2)(−6) = 41

EXAMPLE A5
Compute |A|, where A is given in Example A4. Is A positive definite?

Solution Laplace’s development of the determinant on the first row yields

|A| = 1

∣∣∣∣∣2 1
1 2

∣∣∣∣∣− 2

∣∣∣∣∣1 1
0 2

∣∣∣∣∣+ 3

∣∣∣∣∣1 2
0 1

∣∣∣∣∣
= 1(3) − 2(2) + 3(1) = 2

Development on the third row is somewhat easier because of the presence of the zero
element:

|A| = 0

∣∣∣∣∣2 3
2 1

∣∣∣∣∣− 1

∣∣∣∣∣1 3
1 1

∣∣∣∣∣+ 2

∣∣∣∣∣1 2
1 2

∣∣∣∣∣
= 0(−4) − 1(−2) + 2(0) = 2
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415 A2 Matrix Algebra

To verify positive definiteness, we evaluate the determinants of the leading
minors:

A 11 = 1 > 0 O.K.

∣∣∣∣∣A 11 A 12

A 21 A 22

∣∣∣∣∣ =
∣∣∣∣∣1 2

1 2

∣∣∣∣∣ = 0 Not O.K.

A is not positive definite.

EXAMPLE A6
Evaluate the matrix product AB, where A is given in Example A4 and

B =

⎡
⎢⎣−4 1

1 −4
2 −2

⎤
⎥⎦

Solution

AB =

⎡
⎢⎣a1·b1 a1·b2

a2·b1 a2·b2

a3·b1 a3·b2

⎤
⎥⎦

=

⎡
⎢⎣1(−4) + 2(1) + 3(2) 1(1) + 2(−4) + 3(−2)

1(−4) + 2(1) + 1(2) 1(1) + 2(−4) + 1(−2)
0(−4) + 1(1) + 2(2) 0(1) + 1(−4) + 2(−2)

⎤
⎥⎦ =

⎡
⎢⎣4 −13

0 −9
5 −8

⎤
⎥⎦

EXAMPLE A7
Compute A ⊗ b, where

A =
[

5 −2
−3 4

]
b =

[
1
3

]

Solution

A ⊗ b =
[

a1 ⊗ b
a2 ⊗ b

]

a1 ⊗ b =
[

5
−2

] [
1 3

]
=
[

5 15
−2 −6

]

a2 ⊗ b =
[

−3
4

] [
1 3

]
=
[

−3 −9
4 12

]

∴ A ⊗ b =

⎡
⎢⎢⎢⎣

5 15
−2 −6
−3 −9

4 12

⎤
⎥⎥⎥⎦
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