
Cambridge Books Online

http://ebooks.cambridge.org/

Numerical Methods in Engineering with Python

Jaan Kiusalaas

Book DOI: http://dx.doi.org/10.1017/CBO9780511812224

Online ISBN: 9780511812224

Hardback ISBN: 9780521191326

Paperback ISBN: 9781107435933

Chapter

1 - Introduction to Python pp. 1-26

Chapter DOI: http://dx.doi.org/10.1017/CBO9780511812224.003

Cambridge University Press

P1: PHB

CUUS884-Kiusalaas CUUS884-01 978 0 521 19132 6 December 16, 2009 15:4

1 Introduction to Python

1.1 General Information

Quick Overview

This chapter is not a comprehensive manual of Python. Its sole aim is to provide suf-
ficient information to give you a good start if you are unfamiliar with Python. If you
know another computer language, and we assume that you do, it is not difficult to
pick up the rest as you go.

Python is an object-oriented language that was developed in the late 1980s as
a scripting language (the name is derived from the British television show Monty
Python’s Flying Circus). Although Python is not as well known in engineering circles
as some other languages, it has a considerable following in the programming com-
munity – in fact, Python is used by more programmers than Fortran. Python may be
viewed as an emerging language, because it is still being developed and refined. In
the current state, it is an excellent language for developing engineering applications –
Python’s facilities for numerical computation are as good as those of Fortran or
MATLAB.

R©

Python programs are not compiled into machine code, but are run by an in-
terpreter.1 The great advantage of an interpreted language is that programs can be
tested and debugged quickly, allowing the user to concentrate more on the princi-
ples behind the program and less on programming itself. Because there is no need
to compile, link, and execute after each correction, Python programs can be devel-
oped in a much shorter time than equivalent Fortran or C programs. On the negative
side, interpreted programs do not produce stand-alone applications. Thus, a Python
program can be run only on computers that have the Python interpreter installed.

Python has other advantages over mainstream languages that are important in a
learning environment:

• Python is open-source software, which means that it is free; it is included in most
Linux distributions.

1 The Python interpreter also compiles byte code, which helps to speed up execution somewhat.

1

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:54:25 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.003

Cambridge Books Online © Cambridge University Press, 2016

P1: PHB

CUUS884-Kiusalaas CUUS884-01 978 0 521 19132 6 September 7, 2010 11:6

2 Introduction to Python

• Python is available for all major operating systems (Linux, Unix, Windows, Mac
OS, etc.). A program written on one system runs without modification on all
systems.

• Python is easier to learn and produces more readable code than do most lan-
guages.

• Python and its extensions are easy to install.

Development of Python was clearly influenced by Java and C++, but there is also
a remarkable similarity to MATLAB (another interpreted language, very popular in
scientific computing). Python implements the usual concepts of object-oriented lan-
guages such as classes, methods, and inheritance. We will not use object-oriented
programming in this text. The only object that we need is the N-dimensional array
available in the NumPy module (the NumPy module is discussed later in this
chapter).

To get an idea of the similarities between MATLAB and Python, let us look at the
codes written in the two languages for solution of simultaneous equations Ax = b by
Gauss elimination. Here is the function written in MATLAB:

function x = gaussElimin(a,b)

n = length(b);

for k = 1:n-1

for i= k+1:n

if a(i,k) ˜= 0

lam = a(i,k)/a(k,k);

a(i,k+1:n) = a(i,k+1:n) - lam*a(k,k+1:n);

b(i)= b(i) - lam*b(k);

end

end

end

for k = n:-1:1

b(k) = (b(k) - a(k,k+1:n)*b(k+1:n))/a(k,k);

end

x = b;

The equivalent Python function is:

from numpy import dot

def gaussElimin(a,b):

n = len(b)

for k in range(0,n-1):

for i in range(k+1,n):

if a[i,k] != 0.0:

lam = a [i,k]/a[k,k]

a[i,k+1:n] = a[i,k+1:n] - lam*a[k,k+1:n]

b[i] = b[i] - lam*b[k]

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:54:25 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.003

Cambridge Books Online © Cambridge University Press, 2016

P1: PHB

CUUS884-Kiusalaas CUUS884-01 978 0 521 19132 6 December 16, 2009 15:4

3 1.2 Core Python

for k in range(n-1,-1,-1):

b[k] = (b[k] - dot(a[k,k+1:n],b[k+1:n]))/a[k,k]

return b

The command from numpy import dot instructs the interpreter to load the
function dot (which computes the dot product of two vectors) from the module
numpy. The colon (:) operator, known as the slicing operator in Python, works the
same way it does in MATLAB and Fortran90 – it defines a slice of an array.

The statement for k = 1:n-1 in MATLAB creates a loop that is executed with
k = 1, 2, . . . , n − 1. The same loop appears in Python as for k in range(n-1).
Here the function range(n-1) creates the list [0, 1, . . . , n − 2]; k then loops over the
elements of the list. The differences in the ranges of k reflect the native offsets used
for arrays. In Python, all sequences have zero offset, meaning that the index of the first
element of the sequence is always 0. In contrast, the native offset in MATLAB is 1.

Also note that Python has no end statements to terminate blocks of code (loops,
subroutines, etc.). The body of a block is defined by its indentation; hence indenta-
tion is an integral part of Python syntax.

Like MATLAB, Python is case sensitive. Thus, the names n and N would represent
different objects.

Obtaining Python

The Python interpreter can be downloaded from the Python Language Website
www.python.org. It normally comes with a nice code editor called Idle that allows
you to run programs directly from the editor. For scientific programming, we also
need the NumPy module, which contains various tools for array operations. It is ob-
tainable from the NumPy home page http://numpy.scipy.org/. Both sites also
provide documentation for downloading. If you use Linux, it is very likely that Python
is already installed on your machine (but you must still download NumPy).

You should acquire other printed material to supplement the on-line doc-
umentation. A commendable teaching guide is Python by Chris Fehly (Peachpit
Press, CA, 2002). As a reference, Python Essential Reference by David M. Beazley
(New Riders Publishing, 2001) is recommended. By the time you read this, newer
editions may be available. A useful guide to NumPy is found at http://www.

scipy.org/Numpy Example List.

1.2 Core Python

Variables

In most computer languages the name of a variable represents a value of a given type
stored in a fixed memory location. The value may be changed, but not the type. This

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:54:25 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.003

Cambridge Books Online © Cambridge University Press, 2016

P1: PHB

CUUS884-Kiusalaas CUUS884-01 978 0 521 19132 6 December 16, 2009 15:4

4 Introduction to Python

it not so in Python, where variables are typed dynamically. The following interactive
session with the Python interpreter illustrates this (>>> is the Python prompt):

>>> b = 2 # b is integer type

>>> print b

2

>>> b = b*2.0 # Now b is float type

>>> print b

4.0

The assignment b = 2 creates an association between the name b and the in-
teger value 2. The next statement evaluates the expression b*2.0 and associates the
result with b; the original association with the integer 2 is destroyed. Now b refers to
the floating point value 4.0.

The pound sign (#) denotes the beginning of a comment – all characters between
and the end of the line are ignored by the interpreter.

Strings

A string is a sequence of characters enclosed in single or double quotes. Strings are
concatenated with the plus (+) operator, whereas slicing (:) is used to extract a por-
tion of the string. Here is an example:

>>> string1 = ’Press return to exit’

>>> string2 = ’the program’

>>> print string1 + ’ ’ + string2 # Concatenation

Press return to exit the program

>>> print string1[0:12] # Slicing

Press return

A string is an immutable object – its individual characters cannot be modified
with an assignment statement, and it has a fixed length. An attempt to violate im-
mutability will result in TypeError, as shown here:

>>> s = ’Press return to exit’

>>> s[0] = ’p’

Traceback (most recent call last):

File ’’<pyshell#1>’’, line 1, in ?

s[0] = ’p’

TypeError: object doesn’t support item assignment

Tuples

A tuple is a sequence of arbitrary objects separated by commas and enclosed in
parentheses. If the tuple contains a single object, a final comma is required; for

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:54:25 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.003

Cambridge Books Online © Cambridge University Press, 2016

P1: PHB

CUUS884-Kiusalaas CUUS884-01 978 0 521 19132 6 December 16, 2009 15:4

5 1.2 Core Python

example, x = (2,). Tuples support the same operations as strings; they are also im-
mutable. Here is an example where the tuple rec contains another tuple (6,23,68):

>>> rec = (’Smith’,’John’,(6,23,68)) # This is a tuple

>>> lastName,firstName,birthdate = rec # Unpacking the tuple

>>> print firstName

John

>>> birthYear = birthdate[2]

>>> print birthYear

68

>>> name = rec[1] + ’ ’ + rec[0]

>>> print name

John Smith

>>> print rec[0:2]

(’Smith’, ’John’)

Lists

A list is similar to a tuple, but it is mutable, so that its elements and length can be
changed. A list is identified by enclosing it in brackets. Here is a sampling of opera-
tions that can be performed on lists:

>>> a = [1.0, 2.0, 3.0] # Create a list

>>> a.append(4.0) # Append 4.0 to list

>>> print a

[1.0, 2.0, 3.0, 4.0]

>>> a.insert(0,0.0) # Insert 0.0 in position 0

>>> print a

[0.0, 1.0, 2.0, 3.0, 4.0]

>>> print len(a) # Determine length of list

5

>>> a[2:4] = [1.0, 1.0, 1.0] # Modify selected elements

>>> print a

[0.0, 1.0, 1.0, 1.0, 1.0, 4.0]

If a is a mutable object, such as a list, the assignment statement b = a does not
result in a new object b, but simply creates a new reference to a . Thus any changes
made to b will be reflected in a . To create an independent copy of a list a , use the
statement c = a[:], as shown here:

>>> a = [1.0, 2.0, 3.0]

>>> b = a # ’b’ is an alias of ’a’

>>> b[0] = 5.0 # Change ’b’

>>> print a

[5.0, 2.0, 3.0] # The change is reflected in ’a’

>>> c = a[:] # ’c’ is an independent copy of ’a’

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:54:25 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.003

Cambridge Books Online © Cambridge University Press, 2016

P1: PHB

CUUS884-Kiusalaas CUUS884-01 978 0 521 19132 6 December 16, 2009 15:4

6 Introduction to Python

>>> c[0] = 1.0 # Change ’c’

>>> print a

[5.0, 2.0, 3.0] # ’a’ is not affected by the change

Matrices can be represented as nested lists with each row being an element of
the list. Here is a 3× 3 matrix a in the form of a list:

>>> a = [[1, 2, 3], \

[4, 5, 6], \

[7, 8, 9]]

>>> print a[1] # Print second row (element 1)

[4, 5, 6]

>>> print a[1][2] # Print third element of second row

6

The backslash (\) is Python’s continuation character. Recall that Python se-
quences have zero offset, so that a[0] represents the first row, a[1] the second row,
and so forth. With very few exceptions, we do not use lists for numerical arrays. It
is much more convenient to employ array objects provided by the NumPy module.
Array objects are discussed later.

Arithmetic Operators

Python supports the usual arithmetic operators:

+ Addition

− Subtraction

∗ Multiplication

/ Division

∗∗ Exponentiation

% Modular division

Some of these operators are also defined for strings and sequences as illustrated
here:

>>> s = ’Hello ’

>>> t = ’to you’

>>> a = [1, 2, 3]

>>> print 3*s # Repetition

Hello Hello Hello

>>> print 3*a # Repetition

[1, 2, 3, 1, 2, 3, 1, 2, 3]

>>> print a + [4, 5] # Append elements

[1, 2, 3, 4, 5]

>>> print s + t # Concatenation

Hello to you

>>> print 3 + s # This addition makes no sense

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:54:25 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.003

Cambridge Books Online © Cambridge University Press, 2016

P1: PHB

CUUS884-Kiusalaas CUUS884-01 978 0 521 19132 6 December 16, 2009 15:4

7 1.2 Core Python

Traceback (most recent call last):

File ’’<pyshell#9>’’, line 1, in ?

print n + s

TypeError: unsupported operand types for +: ’int’ and ’str’

Python 2.0 and later versions also have augmented assignment operators, such as
a+ = b, that are familiar to the users of C. The augmented operators and the equiva-
lent arithmetic expressions are shown in the following table.

a += b a = a + b

a -= b a = a - b

a *= b a = a*b

a /= b a = a/b

a **= b a = a**b

a %= b a = a%b

Comparison Operators

The comparison (relational) operators return 1 for true and 0 for false. These opera-
tors are:

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

== Equal to

!= Not equal to

Numbers of different type (integer, floating point, etc.) are converted to a common
type before the comparison is made. Otherwise, objects of different type are consid-
ered to be unequal. Here are a few examples:

>>> a = 2 # Integer

>>> b = 1.99 # Floating point

>>> c = ’2’ # String

>>> print a > b

1

>>> print a == c

0

>>> print (a > b) and (a != c)

1

>>> print (a > b) or (a == b)

1

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:54:25 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.003

Cambridge Books Online © Cambridge University Press, 2016

P1: PHB

CUUS884-Kiusalaas CUUS884-01 978 0 521 19132 6 December 16, 2009 15:4

8 Introduction to Python

Conditionals

The if construct

if condition:
block

executes a block of statements (which must be indented) if the condition returns true.
If the condition returns false, the block is skipped. The if conditional can be followed
by any number of elif (short for “else if”) constructs

elif condition:
block

which work in the same manner. The else clause

else:

block

can be used to define the block of statements that are to be executed if none of
the if-elif clauses is true. The function sign of a illustrates the use of the
conditionals:

def sign_of_a(a):

if a < 0.0:

sign = ’negative’

elif a > 0.0:

sign = ’positive’

else:

sign = ’zero’

return sign

a = 1.5

print ’a is ’ + sign_of_a(a)

Running the program results in the output

a is positive

Loops

The while construct

while condition:
block

executes a block of (indented) statements if the condition is true. After execution of
the block, the condition is evaluated again. If it is still true, the block is executed

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:54:25 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.003

Cambridge Books Online © Cambridge University Press, 2016

P1: PHB

CUUS884-Kiusalaas CUUS884-01 978 0 521 19132 6 December 16, 2009 15:4

9 1.2 Core Python

again. This process is continued until the condition becomes false. The else clause

else:

block

can be used to define the block of statements that are to be executed if the condition
is false. Here is an example that creates the list [1, 1/2, 1/3, . . .]:

nMax = 5

n = 1

a = [] # Create empty list

while n < nMax:

a.append(1.0/n) # Append element to list

n = n + 1

print a

The output of the program is

[1.0, 0.5, 0.33333333333333331, 0.25]

We met the for statement before in Section 1.1. This statement requires a tar-
get and a sequence (usually a list) over which the target loops. The form of the
construct is

for tar get in sequence:
block

You may add an else clause that is executed after the for loop has finished. The
previous program could be written with the for construct as

nMax = 5

a = []

for n in range(1,nMax):

a.append(1.0/n)

print a

Here n is the target and the list [1, 2, . . . , nMax − 1], created by calling the range
function, is the sequence.

Any loop can be terminated by the break statement. If there is an else cause
associated with the loop, it is not executed. The following program, which searches
for a name in a list, illustrates the use of break and else in conjunction with a for

loop:

list = [’Jack’, ’Jill’, ’Tim’, ’Dave’]

name = eval(raw_input(’Type a name: ’)) # Python input prompt

for i in range(len(list)):

if list[i] == name:

print name,’is number’,i + 1,’on the list’

break

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:54:25 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.003

Cambridge Books Online © Cambridge University Press, 2016

P1: PHB

CUUS884-Kiusalaas CUUS884-01 978 0 521 19132 6 December 16, 2009 15:4

10 Introduction to Python

else:

print name,’is not on the list’

Here are the results of two searches:

Type a name: ’Tim’

Tim is number 3 on the list

Type a name: ’June’

June is not on the list

The

continue

statement allows us to skip a portion of the statements in an iterative loop. If the
interpreter encounters the continue statement, it immediately returns to the begin-
ning of the loop without executing the statements below continue. The following
example compiles a list of all numbers between 1 and 99 that are divisible by 7.

x = [] # Create an empty list

for i in range(1,100):

if i%7!= 0: continue # If not divisible by 7, skip rest of loop

x.append(i) # Append i to the list

print x

The printout from the program is

[7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 98]

Type Conversion

If an arithmetic operation involves numbers of mixed types, the numbers are au-
tomatically converted to a common type before the operation is carried out. Type
conversions can also be achieved by the following functions:

int(a) Converts a to integer

long(a) Converts a to long integer

float(a) Converts a to floating point

complex(a) Converts to complex a + 0 j

complex(a,b) Converts to complex a + bj

The foregoing functions also work for converting strings to numbers as long as
the literal in the string represents a valid number. Conversion from a float to an inte-
ger is carried out by truncation, not by rounding off. Here are a few examples:

>>> a = 5

>>> b = -3.6

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:54:25 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.003

Cambridge Books Online © Cambridge University Press, 2016

P1: PHB

CUUS884-Kiusalaas CUUS884-01 978 0 521 19132 6 December 16, 2009 15:4

11 1.2 Core Python

>>> d = ’4.0’

>>> print a + b

1.4

>>> print int(b)

-3

>>> print complex(a,b)

(5-3.6j)

>>> print float(d)

4.0

>>> print int(d) # This fails: d is not Int type

Traceback (most recent call last):

File ’’<pyshell#7>’’, line 1, in ?

print int(d)

ValueError: invalid literal for int(): 4.0

Mathematical Functions

Core Python supports only a few mathematical functions:

abs(a) Absolute value of a

max(sequence) Largest element of sequence

min(sequence) Smallest element of sequence

round(a,n) Round a to n decimal places

cmp(a,b) Returns

⎧⎪⎨
⎪⎩
−1 if a < b

0 if a = b

1 if a > b

The majority of mathematical functions are available in the math module.

Reading Input

The intrinsic function for accepting user input is

raw input(prompt)

It displays the prompt and then reads a line of input that is converted to a string. To
convert the string into a numerical value, use the function

eval(string)

The following program illustrates the use of these functions:

a = raw_input(’Input a: ’)

print a, type(a) # Print a and its type

b = eval(a)

print b,type(b) # Print b and its type

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:54:25 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.003

Cambridge Books Online © Cambridge University Press, 2016

P1: PHB

CUUS884-Kiusalaas CUUS884-01 978 0 521 19132 6 December 16, 2009 15:4

12 Introduction to Python

The function type(a) returns the type of the object a; it is a very useful tool in
debugging. The program was run twice with the following results:

Input a: 10.0

10.0 <type ’str’>

10.0 <type ’float’>

Input a: 11**2

11**2 <type ’str’>

121 <type ’int’>

A convenient way to input a number and assign it to the variable a is

a = eval(raw input(prompt))

Printing Output

Output can be displayed with the print statement:

printobject1, object2, . . .

which converts object1, object2, and so on to strings and prints them on the same line,
separated by spaces. The newline character ’\n’ can be used to force a new line. For
example,

>>> a = 1234.56789

>>> b = [2, 4, 6, 8]

>>> print a,b

1234.56789 [2, 4, 6, 8]

>>> print ’a =’,a, ’\nb =’,b

a = 1234.56789

b = [2, 4, 6, 8]

The modulo operator (%) can be used to format a tuple. The form of the conver-
sion statement is

’%format1 %format2 · · ·’ % tuple

where format1, format2 · · · are the format specifications for each object in the tuple.
Typically used format specifications are:

wd Integer

w.df Floating point notation

w.de Exponential notation

where w is the width of the field and d is the number of digits after the decimal point.
The output is right-justified in the specified field and padded with blank spaces

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:54:25 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.003

Cambridge Books Online © Cambridge University Press, 2016

P1: PHB

CUUS884-Kiusalaas CUUS884-01 978 0 521 19132 6 December 16, 2009 15:4

13 1.2 Core Python

(there are provisions for changing the justification and padding). Here are a couple
of examples:

>>> a = 1234.56789

>>> n = 9876

>>> print ’%7.2f’ % a

1234.57

>>> print ’n = %6d’ % n # Pad with spaces

n = 9876

>>> print ’n = %06d’ % n # Pad with zeroes

n = 009876

>>> print ’%12.4e %6d’ % (a,n)

1.2346e+003 9876

Opening and Closing a File

Before a data file can be accessed, you must create a file object with the command

file object = open(filename, action)

where filename is a string that specifies the file to be opened (including its path if
necessary) and action is one of the following strings:

’r’ Read from an existing file.

’w’ Write to a file. If filename does not exist, it is created.

’a’ Append to the end of the file.

’r+’ Read to and write from an existing file.

’w+’ Same as ’r+’, but filename is created if it does not exist.

’a+’ Same as ’w+’, but data is appended to the end of the file.

It is good programming practice to close a file when access to it is no longer re-
quired. This can be done with the method

file object.close()

Reading Data from a File

There are three methods for reading data from a file. The method

file object.read(n)

reads n characters and returns them as a string. If n is omitted, all the characters in
the file are read.

If only the current line is to be read, use

file object.readline(n)

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:54:25 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.003

Cambridge Books Online © Cambridge University Press, 2016

P1: PHB

CUUS884-Kiusalaas CUUS884-01 978 0 521 19132 6 December 16, 2009 15:4

14 Introduction to Python

which reads n characters from the line. The characters are returned in a string that
terminates in the newline character \n. Omission of n causes the entire line to be
read.

All the lines in a file can be read using

file object.readlines()

This returns a list of strings, each string being a line from the file ending with the
newline character.

Writing Data to a File

The method

file object.write()

writes a string to a file, whereas

file object.writelines()

is used to write a list of strings. Neither method appends a newline character to the
end of a line.

The print statement can also be used to write to a file by redirecting the output
to a file object:

print >> file object, object1, object2, . . .

Apart from the redirection, this statement works just like the regular print com-
mand.

Error Control

When an error occurs during execution of a program, an exception is raised and the
program stops. Exceptions can be caught with try and except statements:

try:

do something
except error:

do something else

where error is the name of a built-in Python exception. If the exception error is not
raised, the try block is executed; otherwise, the execution passes to the except

block. All exceptions can be caught by omitting error from the except statement.
Here is a statement that raises the exception ZeroDivisionError:

>>> c = 12.0/0.0

Traceback (most recent call last):

File ’’<pyshell#0>’’, line 1, in ?

c = 12.0/0.0

ZeroDivisionError: float division

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:54:25 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.003

Cambridge Books Online © Cambridge University Press, 2016

P1: PHB

CUUS884-Kiusalaas CUUS884-01 978 0 521 19132 6 December 16, 2009 15:4

15 1.3 Functions and Modules

This error can be caught by

try:

c = 12.0/0.0

except ZeroDivisionError:

print ’Division by zero’

1.3 Functions and Modules

Functions

The structure of a Python function is

def func name(param1, param2,. . .):
statements
return return values

where param1, param2,. . . are the parameters. A parameter can be any Python ob-
ject, including a function. Parameters may be given default values, in which case the
parameter in the function call is optional. If the return statement or return values
are omitted, the function returns the null object.

The following example computes the first two derivatives of arctan(x) by finite
differences:

from math import atan

def finite_diff(f,x,h=0.0001): # h has a default value

df =(f(x+h) - f(x-h))/(2.0*h)

ddf =(f(x+h) - 2.0*f(x) + f(x-h))/h**2

return df,ddf

x = 0.5

df,ddf = finite_diff(atan,x) # Uses default value of h

print ’First derivative =’,df

print ’Second derivative =’,ddf

Note that atan is passed to finite diff as a parameter. The output from the
program is

First derivative = 0.799999999573

Second derivative = -0.639999991892

The number of input parameters in a function definition may be left arbitrary.
For example, in the function definition

def func(x1,x2,*x3)

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:54:25 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.003

Cambridge Books Online © Cambridge University Press, 2016

P1: PHB

CUUS884-Kiusalaas CUUS884-01 978 0 521 19132 6 December 16, 2009 15:4

16 Introduction to Python

x1 and x2 are the usual parameters, also called positional parameters, whereas x3 is a
tuple of arbitrary length containing the excess parameters. Calling this function with

func(a,b,c,d,e)

results in the following correspondence between the parameters:

a←→ x1, b←→ x2, (c,d,e)←→ x3

The positional parameters must always be listed before the excess parameters.
If a mutable object, such as a list, is passed to a function where it is modified, the

changes will also appear in the calling program. Here is an example:

def squares(a):

for i in range(len(a)):

a[i] = a[i]**2

a = [1, 2, 3, 4]

squares(a)

print a

The output is

[1, 4, 9, 16]

Lambda Statement

If the function has the form of an expression, it can be defined with the lambda state-
ment

func name = lambda param1, param2,...: expression

Multiple statements are not allowed.
Here is an example:

>>> c = lambda x,y : x**2 + y**2

>>> print c(3,4)

25

Modules

It is sound practice to store useful functions in modules. A module is simply a file
where the functions reside; the name of the module is the name of the file. A module
can be loaded into a program by the statement

from module name import *

Python comes with a large number of modules containing functions and methods
for various tasks. Some of the modules are described briefly in the following section.

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:54:25 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.003

Cambridge Books Online © Cambridge University Press, 2016

P1: PHB

CUUS884-Kiusalaas CUUS884-01 978 0 521 19132 6 December 16, 2009 15:4

17 1.4 Mathematics Modules

Additional modules, including graphics packages, are available for downloading on
the Web.

1.4 Mathematics Modules

math Module

Most mathematical functions are not built into core Python, but are available by load-
ing the math module. There are three ways of accessing the functions in a module.
The statement

from math import *

loads all the function definitions in the math module into the current function or
module. The use of this method is discouraged because it not only is wasteful, but
can also lead to conflicts with definitions loaded from other modules.

You can load selected definitions by

from math import func1, func2, . . .

as illustrated here:

>>> from math import log,sin

>>> print log(sin(0.5))

-0.735166686385

The third method, which is used by the majority of programmers, is to make the
module available by

import math

The module can then be accessed by using the module name as a prefix:

>>> import math

>>> print math.log(math.sin(0.5))

-0.735166686385

The contents of a module can be printed by calling dir(module). Here is how to
obtain a list of the functions in the math module:

>>> import math

>>> dir(math)

[’__doc__’, ’__name__’, ’acos’, ’asin’, ’atan’,

’atan2’, ’ceil’, ’cos’, ’cosh’, ’e’, ’exp’, ’fabs’,

’floor’, ’fmod’, ’frexp’, ’hypot’, ’ldexp’, ’log’,

’log10’, ’modf’, ’pi’, ’pow’, ’sin’, ’sinh’, ’sqrt’,

’tan’, ’tanh’]

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:54:25 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.003

Cambridge Books Online © Cambridge University Press, 2016

P1: PHB

CUUS884-Kiusalaas CUUS884-01 978 0 521 19132 6 December 16, 2009 15:4

18 Introduction to Python

Most of these functions are familiar to programmers. Note that the module in-
cludes two constants: π and e.

cmath Module

The cmath module provides many of the functions found in the math module, but
these accept complex numbers. The functions in the module are:

[’__doc__’, ’__name__’, ’acos’, ’acosh’, ’asin’, ’asinh’,

’atan’, ’atanh’, ’cos’, ’cosh’, ’e’, ’exp’, ’log’,

’log10’, ’pi’, ’sin’, ’sinh’, ’sqrt’, ’tan’, ’tanh’]

Here are examples of complex arithmetic:

>>> from cmath import sin

>>> x = 3.0 -4.5j

>>> y = 1.2 + 0.8j

>>> z = 0.8

>>> print x/y

(-2.56205313375e-016-3.75j)

>>> print sin(x)

(6.35239299817+44.5526433649j)

>>> print sin(z)

(0.7173560909+0j)

1.5 numpy Module

General Information

The NumPy module2 is not a part of the standard Python release. As pointed out
before, it must be obtained separately and installed (the installation is very easy).
The module introduces array objects that are similar to lists, but can be manipulated
by numerous functions contained in the module. The size of an array is immutable,
and no empty elements are allowed.

The complete set of functions in numpy is far too long to be printed in its entirety.
The following list is limited to the most commonly used functions:

[’complex’, ’float’, ’abs’, ’append’, arccos’,

’arccosh’, ’arcsin’, ’arcsinh’, ’arctan’, ’arctan2’,

’arctanh’, ’argmax’, ’argmin’, ’cos’, ’cosh’, ’diag’,

’diagonal’, ’dot’, ’e’, ’exp’, ’floor’, ’identity’,

’inner, ’inv’, ’log’, ’log10’, ’max’, ’min’,

’ones’,’outer’, ’pi’, ’prod’ ’sin’, ’sinh’, ’size’,

’solve’,’sqrt’, ’sum’, ’tan’, ’tanh’, ’trace’,

’transpose’, ’zeros’, ’vectorize’]

2 NumPy is the successor of older Python modules called Numeric and NumArray. Their interfaces
and capabilities are very similar. Although Numeric and NumArray are still available, they are no
longer supported.

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:54:25 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.003

Cambridge Books Online © Cambridge University Press, 2016

P1: PHB

CUUS884-Kiusalaas CUUS884-01 978 0 521 19132 6 December 16, 2009 15:4

19 1.5 numpy Module

Creating an Array

Arrays can be created in several ways. One of them is to use the array function to
turn a list into an array:

array(list,dtype = type specification)

Here are two examples of creating a 2× 2 array with floating-point elements:

>>> from numpy import array,float

>>> a = array([[2.0, -1.0],[-1.0, 3.0]])

>>> print a

[[2. -1.]

[-1. 3.]]

>>> b = array([[2, -1],[-1, 3]],dtype = float)

>>> print b

[[2. -1.]

[-1. 3.]]

Other available functions are

zeros((dim1,dim2),dtype = type specification)

which creates a dim1× dim2 array and fills it with zeroes, and

ones((dim1,dim2),dtype = type specification)

which fills the array with ones. The default type in both cases is float.
Finally, there is the function

arange(from,to,increment)

which works just like the range function, but returns an array rather than a list. Here
are examples of creating arrays:

>>> from numpy import *

>>> print arange(2,10,2)

[2 4 6 8]

>>> print arange(2.0,10.0,2.0)

[2. 4. 6. 8.]

>>> print zeros(3)

[0. 0. 0.]

>>> print zeros((3),dtype=int)

[0 0 0]

>>> print ones((2,2))

[[1. 1.]

[1. 1.]]

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:54:25 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.003

Cambridge Books Online © Cambridge University Press, 2016

P1: PHB

CUUS884-Kiusalaas CUUS884-01 978 0 521 19132 6 December 16, 2009 15:4

20 Introduction to Python

Accessing and Changing Array Elements

If a is a rank-2 array, then a[i,j] accesses the element in row i and column j,
whereas a[i] refers to row i. The elements of an array can be changed by assign-
ment:

>>> from numpy import *

>>> a = zeros((3,3),dtype=int)

>>> print a

[[0 0 0]

[0 0 0]

[0 0 0]]

>>> a[0] = [2,3,2] # Change a row

>>> a[1,1] = 5 # Change an element

>>> a[2,0:2] = [8,-3] # Change part of a row

>>> print a

[[2 3 2]

[0 5 0]

[8 -3 0]]

Operations on Arrays

Arithmetic operators work differently on arrays than they do on tuples and lists – the
operation is broadcast to all the elements of the array; that is, the operation is applied
to each element in the array. Here are examples:

>>> from numpy import array

>>> a = array([0.0, 4.0, 9.0, 16.0])

>>> print a/16.0

[0. 0.25 0.5625 1.]

>>> print a - 4.0

[-4. 0. 5. 12.]

The mathematical functions available in NumPy are also broadcast:

>>> from numpy import array,sqrt,sin

>>> a = array([1.0, 4.0, 9.0, 16.0])

>>> print sqrt(a)

[1. 2. 3. 4.]

>>> print sin(a)

[0.84147098 -0.7568025 0.41211849 -0.28790332]

Functions imported from the mathmodule will work on the individual elements,
of course, but not on the array itself. Here is an example:

>>> from numpy import array

>>> from math import sqrt

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:54:25 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.003

Cambridge Books Online © Cambridge University Press, 2016

P1: PHB

CUUS884-Kiusalaas CUUS884-01 978 0 521 19132 6 December 16, 2009 15:4

21 1.5 numpy Module

>>> a = array([1.0, 4.0, 9.0, 16.0])

>>> print sqrt(a[1])

2.0

>>> print sqrt(a)

Traceback (most recent call last):

...

TypeError: only length-1 arrays can be converted to Python scalars

Array Functions

There are numerous functions in NumPy that perform array operations and other
useful tasks. Here are a few examples:

>>> from numpy import *

>>> A = array([[4,-2,1],[-2,4,-2],[1,-2,3]],dtype=float)

>>> b = array([1,4,3],dtype=float)

>>> print diagonal(A) # Principal diagonal

[4. 4. 3.]

>>> print diagonal(A,1) # First subdiagonal

[-2. -2.]

>>> print trace(A) # Sum of diagonal elements

11.0

>>> print argmax(b) # Index of largest element

1

>>> print argmin(A,axis=0) # Indecies of smallest col. elements

[1 0 1]

>>> print identity(3) # Identity matrix

[[1. 0. 0.]

[0. 1. 0.]

[0. 0. 1.]]

There are three functions in NumPy that compute array products. They are illus-
trated by the program listed below For more details, see Appendix A2.

from numpy import *

x = array([7,3])

y = array([2,1])

A = array([[1,2],[3,2]])

B = array([[1,1],[2,2]])

Dot product

print "dot(x,y) =\n",dot(x,y) # {x}.{y}

print "dot(A,x) =\n",dot(A,x) # [A]{x}

print "dot(A,B) =\n",dot(A,B) # [A][B]

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:54:25 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.003

Cambridge Books Online © Cambridge University Press, 2016

P1: PHB

CUUS884-Kiusalaas CUUS884-01 978 0 521 19132 6 December 16, 2009 15:4

22 Introduction to Python

Inner product

print "inner(x,y) =\n",inner(x,y) # {x}.{y}

print "inner(A,x) =\n",inner(A,x) # [A]{x}

print "inner(A,B) =\n",inner(A,B) # [A][B_transpose]

Outer product

print "outer(x,y) =\n",outer(x,y)

print "outer(A,x) =\n",outer(A,x)

print "Outer(A,B) =\n",outer(A,B)

The output of the program is

dot(x,y) =

17

dot(A,x) =

[13 27]

dot(A,B) =

[[5 5]

[7 7]]

inner(x,y) =

17

inner(A,x) =

[13 27]

inner(A,B) =

[[3 6]

[5 10]]

outer(x,y) =

[[14 7]

[6 3]]

outer(A,x) =

[[7 3]

[14 6]

[21 9]

[14 6]]

Outer(A,B) =

[[1 1 2 2]

[2 2 4 4]

[3 3 6 6]

[2 2 4 4]]

Linear Algebra Module

NumPy comes with a linear algebra module called linalg that contains routine tasks
such as matrix inversion and solution of simultaneous equations. For example:

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:54:25 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.003

Cambridge Books Online © Cambridge University Press, 2016

P1: PHB

CUUS884-Kiusalaas CUUS884-01 978 0 521 19132 6 December 16, 2009 15:4

23 1.5 numpy Module

>>> from numpy import array

>>> from numpy.linalg import inv,solve

>>> A = array([[4.0, -2.0, 1.0], \

[-2.0, 4.0, -2.0], \

[1.0, -2.0, 3.0]])

>>> b = array([1.0, 4.0, 2.0])

>>> print inv(A) # Matrix inverse

[[0.33333333 0.16666667 0.]

[0.16666667 0.45833333 0.25]

[0. 0.25 0.5]]

>>> print solve(A,b) # Solve [A]{x} = {b}

[1. , 2.5, 2.]

Copying Arrays

We explained before that if a is a mutable object, such as a list, the assignment state-
ment b = a does not result in a new object b, but simply creates a new reference to
a , called a deep copy. This also applies to arrays. To make an independent copy of an
array a , use the copy method in the NumPy module:

b = a.copy()

Vectorizing Algorithms

Sometimes the broadcasting properties of the mathematical functions in the NumPy
module can be utilized to replace loops in the code. This procedure is known as vec-
torization. Consider, for example, the expression

s =
100∑
i=0

√
iπ
100

sin
iπ
100

The direct approach is to evaluate the sum in a loop, resulting in the following “scalar”
code:

from math import sqrt,sin,pi

x=0.0; sum = 0.0

for i in range(0,101):

sum = sum + sqrt(x)*sin(x)

x = x + 0.01*pi

print sum

The vectorized version of algorithm is

from numpy import sqrt,sin,arange

from math import pi

x = arrange(0.0,1.001*pi,0.01*pi)

print sum(sqrt(x)*sin(x))

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:54:25 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.003

Cambridge Books Online © Cambridge University Press, 2016

P1: PHB

CUUS884-Kiusalaas CUUS884-01 978 0 521 19132 6 December 16, 2009 15:4

24 Introduction to Python

Note that the first algorithm uses the scalar versions of sqrt and sin functions
in the math module, whereas the second algorithm imports these functions from the
numpy. The vectorized algorithm is faster, but uses more memory.

1.6 Scoping of Variables

Namespace is a dictionary that contains the names of the variables and their values.
The namespaces are automatically created and updated as a program runs. There are
three levels of namespaces in Python:

• Local namespace, which is created when a function is called. It contains the vari-
ables passed to the function as arguments and the variables created within the
function. The namespace is deleted when the function terminates. If a variable
is created inside a function, its scope is the function’s local namespace. It is not
visible outside the function.

• A global namespace is created when a module is loaded. Each module has its own
namespace. Variables assigned in a global namespace are visible to any function
within the module.

• Built-in namespace is created when the interpreter starts. It contains the func-
tions that come with the Python interpreter. These functions can be accessed by
any program unit.

When a name is encountered during execution of a function, the interpreter tries
to resolve it by searching the following in the order shown: (1) local namespace,
(2) global namespace, and (3) built-in namespace. If the name cannot be resolved,
Python raises a NameError exception.

Because the variables residing in a global namespace are visible to functions
within the module, it is not necessary to pass them to the functions as arguments
(although is good programming practice to do so), as the following program illus-
trates:

def divide():

c = a/b

print ’a/b =’,c

a = 100.0

b = 5.0

divide()

>>>

a/b = 20.0

Note that the variable c is created inside the function divide and is thus not
accessible to statements outside the function. Hence an attempt to move the print
statement out of the function fails:

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:54:25 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.003

Cambridge Books Online © Cambridge University Press, 2016

P1: PHB

CUUS884-Kiusalaas CUUS884-01 978 0 521 19132 6 December 16, 2009 15:4

25 1.7 Writing and Running Programs

def divide():

c = a/b

a = 100.0

b = 5.0

divide()

print ’a/b =’,c

>>>

Traceback (most recent call last):

File ’’C:\Python22\scope.py’’, line 8, in ?

print c

NameError: name ’c’ is not defined

1.7 Writing and Running Programs

When the Python editor Idle is opened, the user is faced with the prompt >>>, in-
dicating that the editor is in interactive mode. Any statement typed into the editor is
immediately processed upon pressing the enter key. The interactive mode is a good
way to learn the language by experimentation and to try out new programming ideas.

Opening a new window places Idle in the batch mode, which allows typing and
saving of programs. One can also use a text editor to enter program lines, but Idle
has Python-specific features, such as color coding of keywords and automatic inden-
tation, that make work easier. Before a program can be run, it must be saved as a
Python file with the .py extension, for example, myprog.py. The program can then
be executed by typing python myprog.py; in Windows, double-clicking on the pro-
gram icon will also work. But beware: the program window closes immediately after
execution, before you get a chance to read the output. To prevent this from happen-
ing, conclude the program with the line

raw input(’press return’)

Double-clicking the program icon also works in Unix and Linux if the first line
of the program specifies the path to the Python interpreter (or a shell script
that provides a link to Python). The path name must be preceded by the sym-
bols #!. On my computer the path is /usr/bin/python, so that all my programs
start with the line #!/usr/bin/python. On multiuser systems the path is usually
/usr/local/bin/python.

When a module is loaded into a program for the first time with the import state-
ment, it is compiled into bytecode and written in a file with the extension .pyc.
The next time the program is run, the interpreter loads the bytecode rather than the
original Python file. If in the meantime changes have been made to the module, the

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:54:25 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.003

Cambridge Books Online © Cambridge University Press, 2016

P1: PHB

CUUS884-Kiusalaas CUUS884-01 978 0 521 19132 6 December 16, 2009 15:4

26 Introduction to Python

module is automatically recompiled. A program can also be run from Idle using the
Run/Run Module menu.

It is a good idea to document your modules by adding a docstring at the begin-
ning of each module. The docstring, which is enclosed in triple quotes, should ex-
plain what the module does. Here is an example that documents the module error
(we use this module in several of our programs):

module error

’’’ err(string).

Prints ’string’ and terminates program.

’’’

import sys

def err(string):

print string

raw_input(’Press return to exit’)

sys.exit()

The docstring of a module can be printed with the statement

printmodule name. doc

For example, the docstring of error is displayed by

>>> import error

>>> print error.__doc__

err(string).

Prints ’string’ and terminates program.

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:54:25 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.003

Cambridge Books Online © Cambridge University Press, 2016

