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8 Two-Point Boundary Value Problems

Solve y ′′ = f (x, y , y ′), y(a) = α, y(b) = β

8.1 Introduction

In two-point boundary value problems, the auxiliary conditions associated with the
differential equation, called the boundary conditions, are specified at two different
values of x. This seemingly small departure from initial value problems has a ma-
jor repercussion – it makes boundary value problems considerably more difficult to
solve. In an initial value problem we were able to start at the point where the initial
values were given and march the solution forward as far as needed. This technique
does not work for boundary value problems, because there are not enough starting
conditions available at either endpoint to produce a unique solution.

One way to overcome the lack of starting conditions is to guess the missing val-
ues. The resulting solution is very unlikely to satisfy boundary conditions at the other
end, but by inspecting the discrepancy we can estimate what changes to make to the
initial conditions before integrating again. This iterative procedure is known as the
shooting method. The name is derived from analogy with target shooting – take a
shot and observe where it hits the target, then correct the aim and shoot again.

Another means of solving two-point boundary value problems is the finite differ-
ence method, where the differential equations are approximated by finite differences
at evenly spaced mesh points. As a consequence, a differential equation is trans-
formed into set of simultaneous algebraic equations.

The two methods have a common problem: They give rise to nonlinear sets of
equations if the differential equations are not linear. As we noted in Chapter 2, all
methods of solving nonlinear equations are iterative procedures that can consume
a lot of computational resources. Thus, solution of nonlinear boundary value prob-
lems is not cheap. Another complication is that iterative methods need reasonably
good starting values in order to converge. Because there is no set formula for deter-
mining these, an algorithm for solving nonlinear boundary value problems requires
informed input, it cannot be treated as a “black box.”
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291 8.2 Shooting Method

8.2 Shooting Method

Second-Order Differential Equation

The simplest two-point boundary value problem is a second-order differential equa-
tion with one condition specified at x = a and another one at x = b. Here is an ex-
ample of such a problem:

y ′′ = f (x, y , y ′), y(a) = α, y(b) = β (8.1)

Let us now attempt to turn Eqs. (8.1) into the initial value problem

y ′′ = f (x, y , y ′), y(a) = α, y ′(a) = u (8.2)

The key to success is finding the correct value of u. This could be done by trial
and error: guess u and solve the initial value problem by marching from x = a to
y = b. If the solution agrees with the prescribed boundary condition y(b) = β, we are
done; otherwise, we have to adjust u and try again. Clearly, this procedure is very
tedious.

More systematic methods become available to us if we realize that the determi-
nation of u is a root-finding problem. Because the solution of the initial value prob-
lem depends on u, the computed value of y(b) is a function of u; that is,

y(b) = θ(u)

Hence, u is a root of

r (u) = θ(u) − β = 0 (8.3)

where r (u) is the boundary residual (difference between the computed and specified
boundary value at x = b). Equation (8.3) can be solved by one of the root-finding
methods discussed in Chapter 4. We reject the method of bisection because it in-
volves too many evaluations of θ(u). In the Newton–Raphson method we run into the
problem of having to compute dθ/du, which can be done, but not easily. That leaves
Ridder’s algorithm as our method of choice.

Here is the procedure we use in solving nonlinear boundary value problems:

1. Specify the starting values u1 and u2 that must bracket the root u of Eq. (8.3).
2. Apply Ridder’s method to solve Eq. (8.3) for u. Note that each iteration requires

evaluation of θ(u) by solving the differential equation as an initial value problem.
3. Having determined the value of u, solve the differential equations once more and

record the results.

If the differential equation is linear, any root-finding method will need only one
interpolation to determine u. Because Ridder’s method uses three points (u1, u2, and
u3), it is wasteful compared with linear interpolation, which uses only two points (u1

and u2). Therefore, we replace Ridder’s method with linear interpolation whenever
the differential equation is linear.
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292 Two-Point Boundary Value Problems

� linInterp

Here is the algorithm we use for linear interpolation:

## module linInterp

’’’ root = linInterp(f,x1,x2).

Finds the zero of the linear function f(x) by straight

line interpolation based on x = x1 and x2.

’’’

def linInterp(f,x1,x2):

f1 = f(x1)

f2 = f(x2)

return = x2 - f2*(x2 - x1)/(f2 - f1)

EXAMPLE 8.1
Solve the boundary value problem

y ′′ + 3yy ′ = 0 y(0) = 0 y(2) = 1

Solution The equivalent first-order equations are

y′ =
[

y ′
0

y ′
1

]
=
[

y1

−3y0y1

]

with the boundary conditions

y0(0) = 0 y0(2) = 1

Now comes the daunting task of determining the trial values of y ′(0). We could
always pick two numbers at random and hope for the best. However, it is possible
to reduce the element of chance with a little detective work. We start by making the
reasonable assumption that y is smooth (does not wiggle) in the interval 0 ≤ x ≤ 2.
Next, we note that y has to increase from 0 to 1, which requires y ′ > 0. Because both
y and y ′ are positive, we conclude that y ′′ must be negative in order to satisfy the
differential equation. Now we are in a position to make a rough sketch of y :

0 2

1

x

y

Looking at the sketch it is clear that y ′(0) > 0.5, so that y ′(0) = 1 and 2 appear
to be reasonable values for the brackets of y ′(0); if they are not, Ridder’s method will
display an error message.
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293 8.2 Shooting Method

In the program listed next we chose the fourth-order Runge–Kutta method for
integration. It can be replaced by the adaptive version by substituting run kut5

for run kut4 in the import statement. Note that three user-supplied functions are
needed to describe the problem at hand. Apart from the function F(x,y) that de-
fines the differential equations, we also need the functions initCond(u) to specify
the initial conditions for integration, and r(u) to provide Ridder’s method with the
boundary condition residual. By changing a few statements in these functions, the
program can be applied to any second-order boundary value problem. It also works
for third-order equations if integration is started at the end where two of the three
boundary conditions are specified.

#!/usr/bin/python

## example8_1

from numpy import zeros,array

from run_kut4 import *

from ridder import *

from printSoln import *

def initCond(u): # Init. values of [y,y’]; use ’u’ if unknown

return array([0.0, u])

def r(u): # Boundary condition residual--see Eq. (8.3)

X,Y = integrate(F,xStart,initCond(u),xStop,h)

y = Y[len(Y) - 1]

r = y[0] - 1.0

return r

def F(x,y): # First-order differential equations

F = zeros(2)

F[0] = y[1]

F[1] = -3.0*y[0]*y[1]

return F

xStart = 0.0 # Start of integration

xStop = 2.0 # End of integration

u1 = 1.0 # 1st trial value of unknown init. cond.

u2 = 2.0 # 2nd trial value of unknown init. cond.

h = 0.1 # Step size

freq = 2 # Printout frequency

u = ridder(r,u1,u2) # Compute the correct initial condition

X,Y = integrate(F,xStart,initCond(u),xStop,h)

printSoln(X,Y,freq)

raw_input("\nPress return to exit")
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294 Two-Point Boundary Value Problems

Here is the solution :

x y[ 0 ] y[ 1 ]

0.0000e+000 0.0000e+000 1.5145e+000

2.0000e-001 2.9404e-001 1.3848e+000

4.0000e-001 5.4170e-001 1.0743e+000

6.0000e-001 7.2187e-001 7.3287e-001

8.0000e-001 8.3944e-001 4.5752e-001

1.0000e+000 9.1082e-001 2.7013e-001

1.2000e+000 9.5227e-001 1.5429e-001

1.4000e+000 9.7572e-001 8.6471e-002

1.6000e+000 9.8880e-001 4.7948e-002

1.8000e+000 9.9602e-001 2.6430e-002

2.0000e+000 1.0000e+000 1.4522e-002

Note that y ′(0) = 1.5145, so our starting values of 1.0 and 2.0 were on the mark.

EXAMPLE 8.2
Numerical integration of the initial value problem

y ′′ + 4y = 4x y(0) = 0 y ′(0) = 0

yielded y ′(2) = 1.653 64. Use this information to determine the value of y ′(0) that
would result in y ′(2) = 0.

Solution We use linear interpolation

u = u2 − θ(u2)
u2 − u1

θ(u2) − θ(u1)

where in our case u = y ′(0) and θ(u) = y ′(2). So far we are given u1 = 0 and θ(u1) =
1.653 64. To obtain the second point, we need another solution of the initial value
problem. An obvious solution is y = x, which gives us y(0) = 0 and y ′(0) = y ′(2) = 1.
Thus, the second point is u2 = 1 and θ(u2) = 1. Linear interpolation now yields

y ′(0) = u = 1 − (1)
1 − 0

1 − 1.653 64
= 2.529 89

EXAMPLE 8.3
Solve the third-order boundary value problem

y ′′′ = 2y ′′ + 6xy y(0) = 2 y(5) = y ′(5) = 0

and plot y versus x.

Solution The first-order equations and the boundary conditions are

y′ =

⎡
⎢⎣ y ′

0

y ′
1

y ′
2

⎤
⎥⎦ =

⎡
⎢⎣ y1

y2

2y2 + 6xy0

⎤
⎥⎦

y0(0) = 2 y0(5) = y1(5) = 0
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295 8.2 Shooting Method

The program listed next is based on example8 1. Because two of the three
boundary conditions are specified at the right end, we start the integration at x = 5
and proceed with negative h toward x = 0. Two of the three initial conditions are pre-
scribed: y0(5) = y1(5) = 0, whereas the third condition y2(5) is unknown. Because the
differential equation is linear, we replaced ridder with linInterp. In linear inter-
polation, the two guesses for y2(5) (u1 and u2) are not important, so we left them as
they were in Example 8.1. The adaptive Runge–Kutta method (run kut5) was chosen
for the integration.

#!/usr/bin/python

## example8_3

from numpy import zeros,array

from run_kut5 import *

from linInterp import *

from printSoln import *

def initCond(u): # Initial values of [y,y’,y"];

# use ’u’ if unknown

return array([0.0, 0.0, u])

def r(u): # Boundary condition residual--see Eq. (8.3)

X,Y = integrate(F,xStart,initCond(u),xStop,h)

y = Y[len(Y) - 1]

r = y[0] - 2.0

return r

def F(x,y): # First-order differential equations

F = zeros(3)

F[0] = y[1]

F[1] = y[2]

F[2] = 2.0*y[2] + 6.0*x*y[0]

return F

xStart = 5.0 # Start of integration

xStop = 0.0 # End of integration

u1 = 1.0 # 1st trial value of unknown init. cond.

u2 = 2.0 # 2nd trial value of unknown init. cond.

h = -0.1 # initial step size

freq = 2 # printout frequency

u = linInterp(r,u1,u2)

X,Y = integrate(F,xStart,initCond(u),xStop,h)

printSoln(X,Y,freq)

raw_input("\nPress return to exit")
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296 Two-Point Boundary Value Problems

We forego the rather long printout of the solution and show just the plot:

x
0 1 2 3 4 5

y

-2

0

2

4

6

8

Higher-Order Equations

Let us consider the fourth-order differential equation

y (4) = f (x, y , y ′, y ′′, y ′′′) (8.4a)

with the boundary conditions

y(a) = α1 y ′′(a) = α2 y(b) = β1 y ′′(b) = β2 (8.4b)

To solve Eqs. (8.4) with the shooting method, we need four initial conditions at x = a ,
only two of which are specified. Denoting the unknown initial values by u1 and u2, the
set of initial conditions is

y(a) = α1 y ′(a) = u1 y ′′(a) = α2 y ′′′(a) = u2 (8.5)

If Eq. (8.4a) is solved with the shooting method using the initial conditions in Eq.
(8.5), the computed boundary values at x = b depend on the choice of u1 and u2. We
denote this dependence as

y(b) = θ1(u1, u2) y ′′(b) = θ2(u1, u2) (8.6)

The correct values u1 and u2 satisfy the given boundary conditions at x = b:

θ1(u1, u2) = β1 θ2(u1, u2) = β2

or, using vector notation

θ(u) = β (8.7)

These are simultaneous, (generally nonlinear) equations that can be solved by the
Newton–Raphson method discussed in Section 4.6. It must be pointed out again that
intelligent estimates of u1 and u2 are needed if the differential equation is not linear.
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297 8.2 Shooting Method

EXAMPLE 8.4

x
w0

v
L

The displacement v of the simply supported beam can be obtained by solving
the boundary value problem

d4v
dx4

= w0

E I
x
L

v = d2v
dx2

= 0 at x = 0 and x = L

where E I is the bending rigidity. Determine by numerical integration the slopes at
the two ends and the displacement at mid-span.

Solution Introducing the dimensionless variables

ξ = x
L

y = E I
w0 L4

v

transforms the problem to

d4y

dξ4 = ξ y = d2y

dξ2 = 0 at ξ = 0 and 1

The equivalent first-order equations and the boundary conditions are (the prime de-
notes d/dξ )

y′ =

⎡
⎢⎢⎢⎣

y ′
0

y ′
1

y ′
2

y ′
3

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

y1

y2

y3

ξ

⎤
⎥⎥⎥⎦

y0(0) = y2(0) = y0(1) = y2(1) = 0

The program listed next is similar to the one in Example 8.1. With appropri-
ate changes in functions F(x,y), initCond(u), and r(u) the program can solve
boundary value problems of any order greater than 2. For the problem at hand we
chose the Bulirsch–Stoer algorithm to do the integration because it gives us control
over the printout (we need y precisely at mid-span). The nonadaptive Runge–Kutta
method could also be used here, but we would have to guess a suitable step size h.

As the differential equation is linear, the solution requires only one iteration with
the Newton–Raphson method. In this case, the initial values u1 = dy/dξ |x=0 and u2 =
d3y/dξ3|x=0 are irrelevant; convergence always occurs in one iteration.

#!/usr/bin/python

## example8_4

from numpy import zeros,array

from bulStoer import *
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298 Two-Point Boundary Value Problems

from newtonRaphson2 import *

from printSoln import *

def initCond(u): # Initial values of [y,y’,y",y"’];

# use ’u’ if unknown

return array([0.0, u[0], 0.0, u[1]])

def r(u): # Boundary condition residuals--see Eq. (8.7)

r = zeros(len(u))

X,Y = bulStoer(F,xStart,initCond(u),xStop,H)

y = Y[len(Y) - 1]

r[0] = y[0]

r[1] = y[2]

return r

def F(x,y): # First-order differential equations

F = zeros(4)

F[0] = y[1]

F[1] = y[2]

F[2] = y[3]

F[3] = x

return F

xStart = 0.0 # Start of integration

xStop = 1.0 # End of integration

u = array([0.0, 1.0]) # Initial guess for {u}

H = 0.5 # Printout increment

freq = 1 # Printout frequency

u = newtonRaphson2(r,u,1.0e-4)

X,Y = bulStoer(F,xStart,initCond(u),xStop,H)

printSoln(X,Y,freq)

raw_input("\nPress return to exit")

Here is the output:

x y[ 0 ] y[ 1 ] y[ 2 ] y[ 3 ]

0.0000e+000 0.0000e+000 1.9444e-002 0.0000e+000 -1.6667e-001

5.0000e-001 6.5104e-003 1.2153e-003 -6.2500e-002 -4.1667e-002

1.0000e+000 -2.4670e-014 -2.2222e-002 -2.7190e-012 3.3333e-001

Noting that

dv
dx

= dv
dξ

dξ

dx
=
(

w0 L4

E I
dy
dξ

)
1
L

= w0 L3

E I
dy
dξ
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299 8.2 Shooting Method

we obtain

dv
dx

∣∣∣∣
x=0

= 19.444 × 10−3 w0 L3

E I

dv
dx

∣∣∣∣
x=L

= −22.222 × 10−3 w0 L3

E I

v|x=0.5L = 6.5104 × 10−3 w0 L4

E I

which agree with the analytical solution (easily obtained by direct integration of the
differential equation).

EXAMPLE 8.5
Solve

y (4) + 4
x

y3 = 0

with the boundary conditions

y(0) = y ′(0) = 0 y ′′(1) = 0 y ′′′(1) = 1

and plot y versus x.

Solution Our first task is to handle the indeterminacy of the differential equation at
the origin, where x = y = 0. The problem is resolved by applying L’Hôspital’s rule:
4y3/x → 12y2y ′ as x → 0. Thus, the equivalent first-order equations and the bound-
ary conditions that we use in the solution are

y′ =

⎡
⎢⎢⎢⎣

y ′
0

y ′
1

y ′
2

y ′
3

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

y1

y2

y3{
−12y2

0 y1 if x = 0
−4y3

0/x otherwise

⎤
⎥⎥⎥⎥⎥⎥⎦

y0(0) = y1(0) = 0 y2(1) = 0 y3(1) = 1

Because the problem is nonlinear, we need reasonable estimates for y ′′(0) and
y ′′′(0). Based on the boundary conditions y ′′(1) = 0 and y ′′′(1) = 1, the plot of y ′′ is
likely to look something like this:

1
1

1
y"

x0
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300 Two-Point Boundary Value Problems

If we are right, then y ′′(0) < 0 and y ′′′(0) > 0. Based on this rather scanty infor-
mation, we try y ′′(0) = −1 and y ′′′(0) = 1.

The following program uses the adaptive Runge–Kutta method (run kut5) for
integration:

#!/usr/bin/python

## example8_5

from numpy import zeros,array

from run_kut5 import *

from newtonRaphson2 import *

from printSoln import *

def initCond(u): # Initial values of [y,y’,y",y"’];

# use ’u’ if unknown

return array([0.0, 0.0, u[0], u[1]])

def r(u): # Boundary condition residuals-- see Eq. (8.7)

r = zeros(len(u))

X,Y = integrate(F,x,initCond(u),xStop,h)

y = Y[len(Y) - 1]

r[0] = y[2]

r[1] = y[3] - 1.0

return r

def F(x,y): # First-order differential equations

F = zeros(4)

F[0] = y[1]

F[1] = y[2]

F[2] = y[3]

if x == 0.0: F[3] = -12.0*y[1]*y[0]**2

else: F[3] = -4.0*(y[0]**3)/x

return F

x = 0.0 # Start of integration

xStop = 1.0 # End of integration

u = array([-1.0, 1.0]) # Initial guess for u

h = 0.1 # Initial step size

freq = 1 # Printout frequency

u = newtonRaphson2(r,u,1.0e-5)

X,Y = integrate(F,x,initCond(u),xStop,h)

printSoln(X,Y,freq)

raw_input("\nPress return to exit")
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301 8.2 Shooting Method

The results are:

x y[ 0 ] y[ 1 ] y[ 2 ] y[ 3 ]

0.0000e+000 0.0000e+000 0.0000e+000 -9.7607e-001 9.7131e-001

1.0000e-001 -4.7184e-003 -9.2750e-002 -8.7893e-001 9.7131e-001

3.9576e-001 -6.6403e-002 -3.1022e-001 -5.9165e-001 9.7152e-001

7.0683e-001 -1.8666e-001 -4.4722e-001 -2.8896e-001 9.7627e-001

9.8885e-001 -3.2061e-001 -4.8968e-001 -1.1144e-002 9.9848e-001

1.0000e+000 -3.2607e-001 -4.8975e-001 -6.7428e-011 1.0000e+000

x
0.00 0.20 0.40 0.60 0.80 1.00

y

-0.350

-0.300

-0.250

-0.200

-0.150

-0.100

-0.050

0.000

By good fortune, our initial estimates y ′′(0) = −1 and y ′′′(0) = 1 were very close to the
final values.

PROBLEM SET 8.1

1. Numerical integration of the initial value problem

y ′′ + y ′ − y = 0 y(0) = 0 y ′(0) = 1

yielded y(1) = 0.741028. What is the value of y ′(0) that would result in y(1) = 1,
assuming that y(0) is unchanged?

2. The solution of the differential equation

y ′′′ + y ′′ + 2y ′ = 6

with the initial conditions y(0) = 2, y ′(0) = 0, and y ′′(0) = 1 yielded y(1) =
3.03765. When the solution was repeated with y ′′(0) = 0 (the other conditions
being unchanged), the result was y(1) = 2.72318. Determine the value of y ′′(0) so
that y(1) = 0.

3. Roughly sketch the solution of the following boundary value problems. Use the
sketch to estimate y ′(0) for each problem.

(a) y ′′ = −e−y y(0) = 1 y(1) = 0.5

(b) y ′′ = 4y2 y(0) = 10 y ′(1) = 0

(c) y ′′ = cos(xy) y(0) = 0 y(1) = 2
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302 Two-Point Boundary Value Problems

4. Using a rough sketch of the solution estimate of y(0) for the following boundary
value problems.

(a) y ′′ = y2 + xy y ′(0) = 0 y(1) = 2

(b) y ′′ = − 2
x

y ′ − y2 y ′(0) = 0 y(1) = 2

(c) y ′′ = −x(y ′)2 y ′(0) = 2 y(1) = 1

5. Obtain a rough estimate of y ′′(0) for the boundary value problem

y ′′′ + 5y ′′y2 = 0

y(0) = 0 y ′(0) = 1 y(1) = 0

6. Obtain rough estimates of y ′′(0) and y ′′′(0) for the boundary value problem

y (4) + 2y ′′ + y ′ sin y = 0

y(0) = y ′(0) = 0 y(1) = 5 y ′(1) = 0

7. Obtain rough estimates of ẋ(0) and ẏ(0) for the boundary value problem

ẍ + 2x2 − y = 0 x(0) = 1 x(1) = 0

ÿ + y2 − 2x = 1 y(0) = 0 y(1) = 1

8. � Solve the boundary value problem

y ′′ + (1 − 0.2x) y2 = 0 y(0) = 0 y(π/2) = 1

9. � Solve the boundary value problem

y ′′ + 2y ′ + 3y2 = 0 y(0) = 0 y(2) = −1

10. � Solve the boundary value problem

y ′′ + sin y + 1 = 0 y(0) = 0 y(π) = 0

11. � Solve the boundary value problem

y ′′ + 1
x

y ′ + y = 0 y(0) = 1 y ′(2) = 0

and plot y versus x. Warning: y changes very rapidly near x = 0.
12. � Solve the boundary value problem

y ′′ − (1 − e−x) y = 0 y(0) = 1 y(∞) = 0

and plot y versus x. Hint: Replace the infinity by a finite value β. Check your
choice of β by repeating the solution with 1.5β. If the results change, you must
increase β.
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303 8.2 Shooting Method

13. � Solve the boundary value problem

y ′′′ = − 1
x

y ′′ + 1
x2

y ′ + 0.1(y ′)3

y(1) = 0 y ′′(1) = 0 y(2) = 1

14. � Solve the boundary value problem

y ′′′ + 4y ′′ + 6y ′ = 10

y(0) = y ′′(0) = 0 y(3) − y ′(3) = 5

15. � Solve the boundary value problem

y ′′′ + 2y ′′ + sin y = 0

y(−1) = 0 y ′(−1) = −1 y ′(1) = 1

16. � Solve the differential equation in Prob. 15 with the boundary conditions

y(−1) = 0 y(0) = 0 y(1) = 1

(this is a three-point boundary value problem).
17. � Solve the boundary value problem

y (4) = −xy2

y(0) = 5 y ′′(0) = 0 y ′(1) = 0 y ′′′(1) = 2

18. � Solve the boundary value problem

y (4) = −2yy ′′

y(0) = y ′(0) = 0 y(4) = 0 y ′(4) = 1

19. �

y

x

v

θ
8000 m t =t = 10 s0

0

A projectile of mass m in free flight experiences the aerodynamic drag force Fd =
cv2, where v is the velocity. The resulting equations of motion are

ẍ = − c
m

vẋ ÿ = − c
m

vẏ − g

v =
√

ẋ2 + ẏ2
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304 Two-Point Boundary Value Problems

If the projectile hits a target 8 km away after a 10-s flight, determine the launch
velocity v0 and its angle of inclination θ . Use m = 20 kg, c = 3.2 × 10−4 kg/m, and
g = 9.80665 m/s2.

20. �

N x
L

w0
N

v

The simply supported beam carries a uniform load of intensity w0 and the tensile
force N. The differential equation for the vertical displacement v can be shown
to be

d4v
dx4

− N
E I

d2v
dx2

= w0

E I

where E I is the bending rigidity. The boundary conditions are v = d2v/dx2 = 0

at x = 0 and L. Changing the variables to ξ = x
L

and y = E I
w0 L4

v transforms the

problem to the dimensionless form

d4y

dξ4 − β
d2y

dξ2 = 1 β = NL2

E I

y |ξ=0 = d2y

dξ2

∣∣∣∣
ξ=0

= y |ξ=0 = d2y

dξ2

∣∣∣∣
x=1

= 0

Determine the maximum displacement if (a) β = 1.65929 and (b) β = −1.65929
(N is compressive).

21. � Solve the boundary value problem

y ′′′ + yy ′′ = 0 y(0) = y ′(0) = 0, y ′(∞) = 2

and plot y(x) and y ′(x). This problem arises in determining the velocity profile of
the boundary layer in incompressible flow (Blasius solution).

22. �

x

v

L
0w 02w

The differential equation that governs the displacement v of the beam shown is

d4v
dx4

= w0

E I

(
1 + x

L

)
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305 8.3 Finite Difference Method

The boundary conditions are

v = d2v
dx2

= 0 at x = 0 v = dv
dx

= 0 at x = L

Integrate the differential equation numerically and plot the displacement. Follow
the steps used in solving a similar problem in Example 8.4.

8.3 Finite Difference Method

In the finite difference method we divide the range of integration (a , b) into m equal
subintervals of length h each, as shown in Fig. 8.1. The values of the numerical so-
lution at the mesh points are denoted by yi , i = 0, 1, . . . , m; the purpose of the two
points outside (a , b) will be explained shortly. We now make two approximations:

1. The derivatives of y in the differential equation are replaced by the finite differ-
ence expressions. It is common practice to use the first central difference approx-
imations (see Chapter 5):

y ′
i = yi+1 − yi−1

2h
y ′′

i = yi−1 − 2yi + yi+1

h2
etc. (8.8)

2. The differential equation is enforced only at the mesh points.

As a result, the differential equations are replaced by m + 1 simultaneous alge-
braic equations, the unknowns being yi , i = 0, 1, . . . .m. If the differential equation is
nonlinear, the algebraic equations will also be nonlinear and must be solved by the
Newton–Raphson method.

Because the truncation error in a first central difference approximation is O(h2),
the finite difference method is not nearly as accurate as the shooting method – recall
that the Runge–Kutta method has a truncation error of O(h5). Therefore, the conver-
gence criterion specified in the Newton–Raphson method should not be too severe.

xxx x x x10-1 2 x xm m mm + 1- 1- 2
a b

y
y

y
y

-1
0

1
2

y
yyym - 2 m - 1 m m + 1

x

y

Figure 8.1. Finite difference mesh.
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306 Two-Point Boundary Value Problems

Second-Order Differential Equation

Consider the second-order differential equation

y ′′ = f (x, y , y ′)

with the boundary conditions

y(a) = α or y ′(a) = α

y(b) = β or y ′(b) = β

Approximating the derivatives at the mesh points by finite differences, the prob-
lem becomes

yi−1 − 2yi + yi+1

h2
= f

(
xi , yi ,

yi+1 − yi−1

2h

)
, i = 0, 1, . . . , m (8.9)

y0 = α or
y1 − y−1

2h
= α (8.10a)

ym = β or
ym+1 − ym−1

2h
= β (8.10b)

Note the presence of y−1 and ym+1, which are associated with points outside solution
domain (a , b). This “spillover” can be eliminated by using the boundary conditions.
But before we do that, let us rewrite Eqs. (8.9) as

y−1 − 2y0 + y1 − h2 f
(

x0, y0,
y1 − y−1

2h

)
= 0 (a)

yi−1 − 2yi + yi+1 − h2 f
(

xi , yi ,
yi+1 − yi−1

2h

)
= 0, i = 1, 2, . . . , m − 1 (b)

ym−1 − 2ym + ym+1 − h2 f
(

xm, yi ,
ym+1 − ym−1

2h

)
= 0 (c)

The boundary conditions on y are easily dealt with: Eq. (a) is simply replaced
by y0 − α = 0 and Eq. (c) is replaced by ym − β = 0. If y ′ are prescribed, we obtain
from Eqs. (8.10) y−1 = y1 − 2hα and ym+1 = ym−1 + 2hβ, which are then substituted
into Eqs. (a) and (c), respectively. Hence, we finish up with m + 1 equations in the
unknowns y0, y1, . . . , ym:

y0 − α = 0 if y(a) = α

−2y0 + 2y1 − h2 f (x0, y0, α) − 2hα = 0 if y ′(a) = α

}
(8.11a)

yi−1 − 2yi + yi+1 − h2 f
(

xi , yi ,
yi+1 − yi−1

2h

)
= 0 i = 1, 2, . . . , m − 1 (8.11b)

ym − β = 0 if y(b) = β

2ym−1 − 2ym − h2 f (xm, ym, β) + 2hβ = 0 if y ′(b) = β

}
(8.11c)

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:45 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.010

Cambridge Books Online © Cambridge University Press, 2016



307 8.3 Finite Difference Method

EXAMPLE 8.6
Write out Eqs. (8.11) for the following linear boundary value problem using m = 10:

y ′′ = −4y + 4x y(0) = 0 y ′(π/2) = 0

Solve these equations with a computer program.

Solution In this case α = y(0) = 0, β = y ′(π/2) = 0, and f (x, y , y ′) = −4y + 4x.
Hence Eqs. (8.11) are

y0 = 0

yi−1 − 2yi + yi+1 − h2 (−4yi + 4xi ) = 0, i = 1, 2, . . . , m − 1

2y9 − 2y10 − h2(−4y10 + 4x10) = 0

or, using matrix notation,⎡
⎢⎢⎢⎢⎢⎢⎣

1 0
1 −2 + 4h2 1

. . .
. . .

. . .

1 −2 + 4h2 1
2 −2 + 4h2

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

y0

y1

...
y9

y10

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

0
4h2x1

...
4h2x9

4h2x10

⎤
⎥⎥⎥⎥⎥⎥⎦

Note that the coefficient matrix is tridiagonal, so the equations can be solved ef-
ficiently by the decomposition and back substitution routines in module LUdecomp3,
described in Section 2.4. Recalling that in LUdecomp3 the diagonals of the coefficient
matrix are stored in vectors c, d, and e, we arrive at the following program:

#!/usr/bin/python

## example8_6

from numpy import zeros,ones,array,arange

from LUdecomp3 import *

from math import pi

def equations(x,h,m): # Set up finite difference eqs.

h2 = h*h

d = ones(m + 1)*(-2.0 + 4.0*h2)

c = ones(m)

e = ones(m)

b = ones(m+1)*4.0*h2*x

d[0] = 1.0

e[0] = 0.0

b[0] = 0.0

c[m-1] = 2.0

return c,d,e,b

xStart = 0.0 # x at left end

xStop = pi/2.0 # x at right end
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308 Two-Point Boundary Value Problems

m = 10 # Number of mesh spaces

h = (xStop - xStart)/m

x = arange(xStart,xStop + h,h)

c,d,e,b = equations(x,h,m)

c,d,e = LUdecomp3(c,d,e)

y = LUsolve3(c,d,e,b)

print "\n x y"

for i in range(m + 1):

print "%14.5e %14.5e" %(x[i],y[i])

raw_input("\nPress return to exit")

The solution is

x y

0.00000e+000 0.00000e+000

1.57080e-001 3.14173e-001

3.14159e-001 6.12841e-001

4.71239e-001 8.82030e-001

6.28319e-001 1.11068e+000

7.85398e-001 1.29172e+000

9.42478e-001 1.42278e+000

1.09956e+000 1.50645e+000

1.25664e+000 1.54995e+000

1.41372e+000 1.56451e+000

1.57080e+000 1.56418e+000

The exact solution of the problem is

y = x − sin 2x

which yields y(π/2) = π/2 = 1. 57080. Thus, the error in the numerical solution is
about 0.4%. More accurate results can be achieved by increasing m. For example,
with m = 100, we would get y(π/2) = 1.57073, which is in error by only 0.0002%.

EXAMPLE 8.7
Solve the boundary value problem

y ′′ = −3yy ′ y(0) = 0 y(2) = 1

with the finite difference method. Use m = 10 and compare the output with the re-
sults of the shooting method in Example 8.1.

Solution As the problem is nonlinear, Eqs. (8.11) must be solved by the Newton–
Raphson method. The program listed here can be used as a model for other second-
order boundary value problems. The function residual(y) returns the residuals
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309 8.3 Finite Difference Method

of the finite difference equations, which are the left-hand sides of Eqs. (8.11). The
differential equation y ′′ = f (x, y , y ′) is defined in the function F(x,y,yPrime). In
this problem, we chose for the initial solution yi = 0.5xi , which corresponds to the
dashed straight line shown in the rough plot of y in Example 8.1. The starting values
of y0, y1, . . . , ym are specified by function startSoln(x). Note that we relaxed the
convergence criterion in the Newton–Raphson method to 1.0 × 10−5, which is more
in line with the truncation error in the finite difference method.

#!/usr/bin/python

## example8_7

from numpy import zeros,array,arange

from newtonRaphson2 import *

def residual(y): # Residuals of finite diff. Eqs. (8.11)

r = zeros(m + 1)

r[0] = y[0]

r[m] = y[m] - 1.0

for i in range(1,m):

r[i] = y[i-1] - 2.0*y[i] + y[i+1] \

- h*h*F(x[i],y[i],(y[i+1] - y[i-1])/(2.0*h))

return r

def F(x,y,yPrime): # Differential eqn. y" = F(x,y,y’)

F = -3.0*y*yPrime

return F

def startSoln(x): # Starting solution y(x)

y = zeros(m + 1)

for i in range(m + 1): y[i] = 0.5*x[i]

return y

xStart = 0.0 # x at left end

xStop = 2.0 # x at right end

m = 10 # Number of mesh intevals

h = (xStop - xStart)/m

x = arange(xStart,xStop + h,h)

y = newtonRaphson2(residual,startSoln(x),1.0e-5)

print "\n x y"

for i in range(m + 1):

print "%14.5e %14.5e" %(x[i],y[i])

raw_input("\nPress return to exit")
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310 Two-Point Boundary Value Problems

Here is the output from our program together with the solution obtained in
Example 8.1.

x y y from Ex. 8.1

0.00000e+000 0.00000e+000 0.00000e+000

2.00000e-001 3.02404e-001 2.94050e-001

4.00000e-001 5.54503e-001 5.41710e-001

6.00000e-001 7.34691e-001 7.21875e-001

8.00000e-001 8.49794e-001 8.39446e-001

1.00000e+000 9.18132e-001 9.10824e-001

1.20000e+000 9.56953e-001 9.52274e-001

1.40000e+000 9.78457e-001 9.75724e-001

1.60000e+000 9.90201e-001 9.88796e-001

1.80000e+000 9.96566e-001 9.96023e-001

2.00000e+000 1.00000e+000 1.00000e+000

The maximum discrepancy between the solutions is 1.8% occurring at x = 0.6.
As the shooting method used in Example 8.1 is considerably more accurate than the
finite difference method, the discrepancy can be attributed to truncation error in the
finite difference solution. This error would be acceptable in many engineering prob-
lems. Again, accuracy can be increased by using a finer mesh. With m = 100 we can
reduce the error to 0.07%, but we must question whether the 10-fold increase in com-
putation time is really worth the extra precision.

Fourth-Order Differential Equation

For the sake of brevity we limit our discussion to the special case where y ′ and y ′′′ do
not appear explicitly in the differential equation; that is, we consider

y (4) = f (x, y , y ′′)

We assume that two boundary conditions are prescribed at each end of the solution
domain (a , b). Problems of this form are commonly encountered in beam theory.

Again, we divide the solution domain into m intervals of length h each. Replacing
the derivatives of y by finite differences at the mesh points, we get the finite difference
equations

yi−2 − 4yi−1 + 6yi − 4yi+1 + yi+2

h4
= f

(
xi , yi ,

yi−1 − 2yi + yi+1

h2

)
(8.12)

where i = 0, 1, . . . , m. It is more revealing to write these equations as

y−2 − 4y−1 + 6y0 − 4y1 + y2 − h4 f
(

x0, y0,
y−1 − 2y0 + y1

h2

)
= 0 (8.13a)

y−1 − 4y0 + 6y1 − 4y2 + y3 − h4 f
(

x1, y1,
y0 − 2y1 + y2

h2

)
= 0 (8.13b)
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311 8.3 Finite Difference Method

y0 − 4y1 + 6y2 − 4y3 + y4 − h4 f
(

x2, y2,
y1 − 2y2 + y3

h2

)
= 0 (8.13c)

...

ym−3 − 4ym−2 + 6ym−1 − 4ym + ym+1 − h4 f
(

xm−1, ym−1,
ym−2 − 2ym−1 + ym

h2

)
= 0

(8.13d)

ym−2 − 4ym−1 + 6ym − 4ym+1 + ym+2 − h4 f
(

xm, ym,
ym−1 − 2ym + ym+1

h2

)
= 0

(8.13e)
We now see that there are four unknowns, y−2, y−1, ym+1, and ym+2, that lie outside
the solution domain and must be eliminated by applying the boundary conditions, a
task that is facilitated by Table 8.1.

Bound. cond. Equivalent finite difference expression

y(a) = α y0 = α

y ′(a) = α y−1 = y1 − 2hα

y ′′(a) = α y−1 = 2y0 − y1 + h2α

y ′′′(a) = α y−2 = 2y−1 − 2y1 + y2 − 2h3α

y(b) = β ym = β

y ′(b) = β ym+1 = ym−1 + 2hβ

y ′′(b) = β ym+1 = 2ym − ym−1 + h2β

y ′′′(b) = β ym+2 = 2ym+1 − 2ym−1 + ym−2 + 2h3β

Table 8.1

The astute observer may notice that some combinations of boundary conditions
will not work in eliminating the “spillover.” One such combination is clearly y(a) = α1

and y ′′′(a) = α2. The other one is y ′(a) = α1 and y ′′(a) = α2. In the context of beam
theory, this makes sense: we can impose either a displacement y or a shear force
E Iy ′′′ at a point, but it is impossible to enforce both of them simultaneously. Similarly,
it makes no physical sense to prescribe both the slope y ′ and the bending moment
E Iy ′′at the same point.

EXAMPLE 8.8

P

L
v

x

The uniform beam of length L and bending rigidity E I is attached to rigid sup-
ports at both ends. The beam carries a concentrated load P at its mid-span. If we
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312 Two-Point Boundary Value Problems

utilize symmetry and model only the left half of the beam, the displacement v can be
obtained by solving the boundary value problem

E I
d4v
dx4

= 0

v|x=0 = 0
dv
dx

∣∣∣∣
x=0

= 0
dv
dx

∣∣∣∣
x=L/2

= 0 E I
d3v
dx3

∣∣∣∣
x=L/2

= −P/2

Use the finite difference method to determine the displacement and the bending mo-
ment M = −E I d2v/dx2 at the mid-span (the exact values are v = P L3/(192E I ) and
M = P L/8).

Solution By introducing the dimensionless variables

ξ = x
L

y = E I
P L3

v

the problem becomes

d4y

dξ4 = 0

y |ξ=0 = 0
dy
dξ

∣∣∣∣
ξ=0

= 0
dy
dξ

∣∣∣∣
ξ=1/2

= 0
d3y

dξ3

∣∣∣∣
ξ=1/2

= −1
2

We now proceed to writing Eqs. (8.13) taking into account the boundary condi-
tions. Referring to Table 8.1, the finite difference expressions of the boundary condi-
tions at the left end are y0 = 0 and y−1 = y1. Hence, Eqs. (8.13a) and (8.13b) become

y0 = 0 (a)

−4y0 + 7y1 − 4y2 + y3 = 0 (b)

Equation (8.13c) is

y0 − 4y1 + 6y2 − 4y3 + y4 = 0 (c)

At the right end the boundary conditions are equivalent to ym+1 = ym−1 and

ym+2 = 2ym+1 + ym−2 − 2ym−1 + 2h3(−1/2) = ym−2 − h3

Substitution into Eqs. (8.13d) and (8.13e) yields

ym−3 − 4ym−2 + 7ym−1 − 4ym = 0 (d)

2ym−2 − 8ym−1 + 6ym = h3 (e)
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313 8.3 Finite Difference Method

The coefficient matrix of Eqs. (a)–(e) can be made symmetric by dividing Eq. (e)
by 2. The result is⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 7 −4 1
0 −4 6 −4 1

. . .
. . .

. . .
. . .

. . .

1 −4 6 −4 1
1 −4 7 −4

1 −4 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y0

y1

y2

...
ym−2

ym−1

ym

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
...
0
0

0.5h3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The foregoing system of equations can be solved with the decomposition and
back substitution routines in module LUdecomp5 – see Section 2.4. Recall that LUde-
comp5 works with the vectors d, e, and f that form the diagonals of the upper half of
the matrix. The constant vector is denoted by b. The program that sets up and solves
the equations is as follows:

#!/usr/bin/python

## example8_8

from numpy import zeros,ones,array,arange

from LUdecomp5 import *

def equations(x,h,m): # Set up finite difference eqs.

h4 = h**4

d = ones(m + 1)*6.0

e = ones(m)*(-4.0)

f = ones(m-1)

b = zeros(m+1)

d[0] = 1.0

d[1] = 7.0

e[0] = 0.0

f[0] = 0.0

d[m-1] = 7.0

d[m] = 3.0

b[m] = 0.5*h**3

return d,e,f,b

xStart = 0.0 # x at left end

xStop = 0.5 # x at right end

m = 20 # Number of mesh spaces

h = (xStop - xStart)/m

x = arange(xStart,xStop + h,h)

d,e,f,b = equations(x,h,m)

d,e,f = LUdecomp5(d,e,f)

y = LUsolve5(d,e,f,b)
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314 Two-Point Boundary Value Problems

print "\n x y"

for i in range(m + 1):

print "%14.5e %14.5e" %(x[i],y[i])

raw_input("\nPress return to exit")

When we ran the program with m = 20, the last two lines of the output were

x y

4.75000e-001 5.19531e-003

5.00000e-001 5.23438e-003

Thus at the mid-span we have

v|x=0.5L = P L3

E I
y |ξ=0.5 = 5.234 38 × 10−3 P L3

E I

d2v
dx2

∣∣∣∣
x=0.5L

= P L3

E I

(
1

L2

d2y

dξ2

∣∣∣∣
ξ=0.5

)
≈ P L

E I
ym−1 − 2ym + ym+1

h2

= P L
E I

(5.19531 − 2(5.23438) + 5.19531) × 10−3

0.0252

= −0.125 024
P L
E I

M|x=0.5L = −E I
d2v
dx2

∣∣∣∣
ξ=0.5

= 0.125 024 P L

In comparison, the exact solution yields

v|x=0.5L = 5.208 33 × 10−3 P L3

E I
M|x=0.5L = = 0.125 000 P L

PROBLEM SET 8.2

Problems 1–5 Use first central difference approximations to transform the boundary
value problem shown into simultaneous equations Ay = b.

Problems 6–10 Solve the given boundary value problem with the finite difference
method using m = 20.

1. y ′′ = (2 + x)y , y(0) = 0, y ′(1) = 5.
2. y ′′ = y + x2, y(0) = 0, y(1) = 1.
3. y ′′ = e−x y ′, y(0) = 1, y(1) = 0.
4. y (4) = y ′′ − y , y(0) = 0, y ′(0) = 1, y(1) = 0, y ′(1) = −1.
5. y (4) = −9y + x, y(0) = y ′′(0) = 0, y ′(1) = y ′′′(1) = 0.
6. � y ′′ = xy , y(1) = 1.5 y(2) = 3.
7. � y ′′ + 2y ′ + y = 0, y(0) = 0, y(1) = 1. Exact solution is y = xe1−x .
8. � x2y ′′ + xy ′ + y = 0, y(1) = 0, y(2) = 0.638961. Exact solution is y = sin

(ln x).
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315 8.3 Finite Difference Method

9. � y ′′ = y2 sin y , y ′(0) = 0, y(π) = 1.
10. � y ′′ + 2y(2xy ′ + y) = 0, y(0) = 1/2, y ′(1) = −2/9. Exact solution is y = (2 +

x2)−1.
11. �

v

x

w0

L/2 L/4L/4

I0

1I

I0

The simply supported beam consists of three segments with the moments of in-
ertia I0 and I1 as shown. A uniformly distributed load of intensity w0 acts over the
middle segment. Modeling only the left half of the beam, the differential equa-
tion

d2v
dx2

= − M
E I

for the displacement v is

d2v
dx2

= −w0 L2

4E I0
×

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x
L

in 0 < x <
L
4

I0

I1

[
x
L

− 2
(

x
L

− 1
4

)2
]

in
L
4

< x <
L
2

Introducing the dimensionless variables

ξ = x
L

y = E I0

w0 L4
v γ = I1

I0

the differential equation becomes

d2y

dξ2 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−1
4
ξ in 0 < ξ <

1
4

− 1
4γ

[
ξ − 2

(
ξ − 1

4

)2
]

in
1
4

< ξ <
1
2

with the boundary conditions

y |ξ=0 = d2y

dξ2

∣∣∣∣
ξ=0

= dy
dξ

∣∣∣∣
ξ=1/2

= d3y

dξ3

∣∣∣∣
ξ=1/2

= 0

Use the finite difference method to determine the maximum displacement of the
beam using m = 20 and γ = 1.5 and compare it with the exact solution

vmax = 61
9216

w0 L4

E I0
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316 Two-Point Boundary Value Problems

12. �

d
M0

0 1dd
x

v L

The simply supported, tapered beam has a circular cross section. A couple of
magnitude M0 is applied to the left end of the beam. The differential equation
for the displacement v is

d2v
dx2

= − M
E I

= − M0(1 − x/L)
E I0(d/d0)4

where

d = d0

[
1 +

(
d1

d0
− 1
)

x
L

]
I0 = πd4

0

64

Substituting

ξ = x
L

y = E I0

M0 L2
v δ = d1

d0

the differential equation becomes

d2y

dξ2 = − 1 − ξ

[1 + (δ − 1)ξ ]4

with the boundary conditions

y |ξ=0 = d2y
dx2

∣∣∣∣
ξ=0

= y |ξ=1 = d2y
dx2

∣∣∣∣
ξ=1

= 0

Solve the problem with the finite difference method with δ = 1.5 and m = 20;
plot y versus ξ . The exact solution is

y = − (3 + 2δξ − 3ξ )ξ2

6(1 + δξ − ξ2)
+ 1

3δ

13. � Solve Example 8.4 by the finite difference method with m = 20. Hint: Compute
end slopes from second noncentral differences in Tables 5.3a and 5.3b.

14. � Solve Prob. 20 in Problem Set 8.1 with the finite difference method. Use m = 20.
15. �

L

w0

x

v

The simply supported beam of length L is resting on an elastic foundation
of stiffness k N/m2. The displacement v of the beam due to the uniformly
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317 8.3 Finite Difference Method

distributed load of intensity w0 N/m is given by the solution of the boundary
value problem

E I
d4v
dx4

+ kv = w0, v|x=0 = d2y
dx2

∣∣∣∣
x=0

= v|x=L = d2v
dx2

∣∣∣∣
x=L

= 0

The nondimensional form of the problem is

d2y

dξ4 + γ y = 1, y |ξ=0 = d2y
dx2

∣∣∣∣
ξ−0

= y |ξ=1 = d2y
dx2

∣∣∣∣
ξ=1

= 0

where

ξ = x
L

y = E I
w0 L4

v γ = k L4

E I

Solve this problem by the finite difference method with γ =105 and plot y
versus ξ .

16. � Solve Prob. 15 if the ends of the beam are free and the load is confined to the
middle half of the beam. Consider only the left half of the beam, in which case
the nondimensional form of the problem is

d4y

dξ4 + γ y =
{

0 in 0 < ξ < 1/4
1 in 1/4 < ξ < 1/2

d2y

dξ2

∣∣∣∣
ξ=0

= d3y

dξ3

∣∣∣∣
ξ=0

= dy
dξ

∣∣∣∣
ξ=1/2

= d3y

dξ3

∣∣∣∣
ξ=1/2

= 0

17. � The general form of a linear, second-order boundary value problem is

y ′′ = r (x) + s(x)y + t (x)y ′

y(a) = α or y ′(a) = α

y(b) = β or y ′(b) = β

Write a program that solves this problem with the finite difference method for
any user-specified r (x), s(x) and t (x). Test the program by solving Prob. 8.

18. �

a

a/2

200 Co

0o

r
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318 Two-Point Boundary Value Problems

The thick cylinder conveys a fluid with a temperature of 0◦C. At the same time
the cylinder is immersed in a bath that is kept at 200◦C. The differential equation
and the boundary conditions that govern steady-state heat conduction in the
cylinder are

d2T
dr 2

= −1
r

dT
dr

T |r=a/2 = 0 T |r=a = 200◦C

where T is the temperature. Determine the temperature profile through the
thickness of the cylinder with the finite difference method and compare it with
the analytical solution

T = 200
(

1 − ln r/a
ln 0.5

)
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