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6 Numerical Integration

Compute
∫ b

a f (x) dx, where f (x) is a given function

6.1 Introduction

Numerical integration, also known as quadrature, is intrinsically a much more accu-
rate procedure than numerical differentiation. Quadrature approximates the definite
integral

∫ b

a
f (x) dx

by the sum

I =
n∑

i=0

Ai f (xi )

where the nodal abscissas xi and weights Ai depend on the particular rule used for the
quadrature. All rules of quadrature are derived from polynomial interpolation of the
integrand. Therefore, they work best if f (x) can be approximated by a polynomial.

Methods of numerical integration can be divided into two groups: Newton–
Cotes formulas and Gaussian quadrature. Newton–Cotes formulas are characterized
by equally spaced abscissas and include well-known methods such as the trape-
zoidal rule and Simpson’s rule. They are most useful if f (x) has already been com-
puted at equal intervals or can be computed at low cost. Because Newton–Cotes
formulas are based on local interpolation, they require only a piecewise fit to a
polynomial.

In Gaussian quadrature, the locations of the abscissas are chosen to yield the best
possible accuracy. Because Gaussian quadrature requires fewer evaluations of the in-
tegrand for a given level of precision, it is popular in cases where f (x) is expensive to
evaluate. Another advantage of Gaussian quadrature is ability to handle integrable

193

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:41 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.008

Cambridge Books Online © Cambridge University Press, 2016



194 Numerical Integration

singularities, enabling us to evaluate expressions such as∫ 1

0

g(x)√
1 − x2

dx

provided that g(x) is a well-behaved function.

6.2 Newton–Cotes Formulas

Consider the definite integral ∫ b

a
f (x) dx (6.1)

We divide the range of integration (a , b) into n equal intervals of length h = (b − a)/n,
as shown in Fig. 6.1, and denote the abscissas of the resulting nodes by x0, x1, . . . , xn.
Next, we approximate f (x) by a polynomial of degree n that intersects all the nodes.
Lagrange’s form of this polynomial, Eq. (3.1a), is

Pn(x) =
n∑

i=0

f (xi )�i (x)

where �i (x) are the cardinal functions defined in Eq. (3.1b). Therefore, an approxima-
tion to the integral in Eq. (6.1) is

I =
∫ b

a
Pn(x)dx =

n∑
i=0

[
f (xi )

∫ b

a
�i (x)dx

]
=

n∑
i=0

Ai f (xi ) (6.2a)

where

Ai =
∫ b

a
�i (x)dx, i = 0, 1, . . . , n (6.2b)

Equations (6.2) are the Newton–Cotes formulas. Classical examples of these formulas
are the trapezoidal rule (n = 1), Simpson’s rule (n = 2), and 3/8 Simpson’s rule (n = 3).
The most important of these is the trapezoidal rule. It can be combined with Richard-
son extrapolation into an efficient algorithm known as Romberg integration, which
makes the other classical rules somewhat redundant.

x x x x xx

h

a b

f(x) P (x)

n1 2 30 -1n
x

n

Figure 6.1. Polynomial approximation of f (x).

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:41 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.008

Cambridge Books Online © Cambridge University Press, 2016



195 6.2 Newton–Cotes Formulas

Ef(x)

x  = a x  = b x
h

0 1

Area =I Figure 6.2. Trapezoidal rule.

Trapezoidal Rule

If n = 1 (one panel), as illustrated in Fig 6.2, we have �0 = (x − x1)/(x0 − x1) = −(x −
b)/h. Therefore,

A 0 = 1
h

∫ b

a

(
x − b

)
dx = 1

2h
(b − a)2 = h

2

Also, �1 = (x − x0)/(x1 − x0) = (x − a)/h, so that

A 1 = 1
h

∫ b

a
(x − a) dx = 1

2h
(b − a)2 = h

2

Substitution in Eq. (6.2a) yields

I = [f (a) + f (b)
] h

2
(6.3)

which is known as the trapezoidal rule. It represents the area of the trapezoid in
Fig. 6.2.

The error in the trapezoidal rule

E =
∫ b

a
f (x)dx − I

is the area of the region between f (x) and the straight-line interpolant, as indicated
in Figure 6.2. It can be obtained by integrating the interpolation error in Eq. (3.3):

E = 1
2!

∫ b

a
(x − x0)(x − x1)f ′′(ξ )dx = 1

2
f ′′(ξ )

∫ b

a
(x − a)(x − b)dx

= − 1
12

(b − a)3 f ′′(ξ ) = − h3

12
f ′′(ξ ) (6.4)

Composite Trapezoidal Rule

In practice the trapezoidal rule is applied in a piecewise fashion. Figure 6.3 shows the
region (a , b) divided into n panels, each of width h. The function f (x) to be integrated
is approximated by a straight line in each panel. From the trapezoidal rule we obtain
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196 Numerical Integration

x x x x xx

h
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f(x)

10 -1
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i

iI

1i+ nn

Figure 6.3. Composite trapezoidal rule.

for the approximate area of a typical (ith) panel

Ii = [f (xi ) + f (xi+1)
] h

2

Hence, the total area, representing
∫ b

a f (x) dx, is

I =
n−1∑
i=0

Ii = [f (x0) + 2f (x1) + 2f (x2) + . . . + 2f (xn−1) + f (xn)
] h

2
(6.5)

which is the composite trapezoidal rule.
The truncation error in the area of a panel is – see Eq. (6.4)

Ei = − h3

12
f ′′(ξi )

where ξi lies in (xi , xi+1). Hence, the truncation error in Eq. (6.5) is

E =
n−1∑
i=0

Ei = − h3

12

n−1∑
i=0

f ′′(ξi ) (a)

But
n−1∑
i=0

f ′′(ξi ) = nf̄ ′′

where f̄ ′′ is the arithmetic mean of the second derivatives. If f ′′(x) is continuous,
there must be a point ξ in (a , b) at which f ′′(ξ ) = f̄ ′′, enabling us to write

n−1∑
i=0

f ′′(ξi ) = nf ′′(ξ ) = b − a
h

f ′′(ξ )

Therefore, Eq. (a) becomes

E = − (b − a)h2

12
f ′′(ξ ) (6.6)

It would be incorrect to conclude from Eq. (6.6) that E = ch2 (c being a constant),
because f ′′(ξ ) is not entirely independent of h. A deeper analysis of the error1 shows

1 The analysis requires familiarity with the Euler-Maclaurin summation formula, which is covered
in advanced texts.
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197 6.2 Newton–Cotes Formulas

that if f (x) and its derivatives are finite in (a , b), then

E = c1h2 + c2h4 + c3h6 + . . . (6.7)

Recursive Trapezoidal Rule

Let Ik be the integral evaluated with the composite trapezoidal rule using 2k−1 panels.
Note that if k is increased by 1, the number of panels is doubled. Using the notation

H = b − a

Equation (6.5) yields the following results for k = 1, 2, and 3.
k = 1 (1 panel):

I1 = [f (a) + f (b)
] H

2
(6.8)

k = 2 (2 panels):

I2 =
[

f (a) + 2f
(

a + H
2

)
+ f (b)

]
H
4

= 1
2

I1 + f
(

a + H
2

)
H
2

k = 3 (4 panels):

I3 =
[

f (a) + 2f
(

a + H
4

)
+ 2f

(
a + H

2

)
+ 2f

(
a + 3H

4

)
+ f (b)

]
H
8

= 1
2

I2 +
[

f
(

a + H
4

)
+ f

(
a + 3H

4

)]
H
4

We can now see that for arbitrary k > 1 we have

Ik = 1
2

Ik−1 + H
2k−1

2k−2∑
i=1

f
[

a + (2i − 1)H
2k−1

]
, k = 2, 3, . . . (6.9a)

which is the recursive trapezoidal rule. Observe that the summation contains only
the new nodes that were created when the number of panels was doubled. Therefore,
the computation of the sequence I1, I2, I3, . . . , Ik from Eqs. (6.8) and (6.9) involves the
same amount of algebra as the calculation of Ik directly from Eq. (6.5). The advantage
of using the recursive trapezoidal rule is that it allows us to monitor convergence and
terminate the process when the difference between Ik−1 and Ik becomes sufficiently
small. A form of Eq. (6.9a) that is easier to remember is

I (h) = 1
2

I (2h) + h
∑

f (xnew) (6.9b)

where h = H/n is the width of each panel.

� trapezoid

The function trapezoid computes Ik (Inew), given Ik−1 (Iold) using Eqs. (6.8) and
(6.9). We can compute

∫ b
a f (x) dx by calling trapezoid with k = 1, 2, . . . until the

desired precision is attained.
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198 Numerical Integration

## module trapezoid

’’’ Inew = trapezoid(f,a,b,Iold,k).

Recursive trapezoidal rule:

Iold = Integral of f(x) from x = a to b computed by

trapezoidal rule with 2ˆ(k-1) panels.

Inew = Same integral computed with 2ˆk panels.

’’’

def trapezoid(f,a,b,Iold,k):

if k == 1:Inew = (f(a) + f(b))*(b - a)/2.0

else:

n = 2**(k -2 ) # Number of new points

h = (b - a)/n # Spacing of new points

x = a + h/2.0

sum = 0.0

for i in range(n):

sum = sum + f(x)

x = x + h

Inew = (Iold + h*sum)/2.0

return Inew

Simpson’s Rules

Simpson’s 1/3 rule can be obtained from the Newton–Cotes formulas with n = 2,
that is, by passing a parabolic interpolant through three adjacent nodes, as shown
in Fig.6.4. The area under the parabola, which represents an approximation of∫ b

a f (x) dx, is (see derivation in Example 6.1)

I =
[

f (a) + 4f
(

a + b
2

)
+ f (b)

]
h
3

(a)

To obtain the composite Simpson’s 1/3 rule, the integration range (a , b) is divided
into n panels (n even) of width h = (b − a)/n each, as indicated in Fig. 6.5. Applying

f(x)

x  = a x  = b x
0 1x

h

2

h

ξ

Parabola

Figure 6.4. Simpson’s 1/3 rule.
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199 6.2 Newton–Cotes Formulas

x x x x

h

a b

f(x )

0
x

i i+2i+1 x

h hh

n

Figure 6.5. Composite Simpson’s 1/3 rule.

Eq. (a) to two adjacent panels, we have∫ xi+2

xi

f (x) dx ≈

[
f (xi ) + 4f (xi+1) + f (xi+2)

] h
3

(b)

Substituting Eq. (b) into

∫ b

a
f (x)dx =

∫ xm

x0

f (x) dx =
n∑

i=0,2,...

[∫ xi+2

xi

f (x)dx
]

yields

∫ b

a
f (x) dx ≈ I = [f (x0) + 4f (x1) + 2f (x2) + 4f (x3) + . . . (6.10)

· · · + 2f (xn−2) + 4f (xn−1) + f (xn)]
h
3

The composite Simpson’s 1/3 rule in Eq. (6.10) is perhaps the best-known method of
numerical integration. Its reputation is somewhat undeserved, since the trapezoidal
rule is more robust, and Romberg integration is more efficient.

The error in the composite Simpson’s rule is

E = (b − a)h4

180
f (4)(ξ ) (6.11)

from which we conclude that Eq. (6.10) is exact if f (x) is a polynomial of degree 3 or
less.

Simpson’s 1/3 rule requires the number of panels n to be even. If this condition
is not satisfied, we can integrate over the first (or last) three panels with Simpson’s 3/8
rule:

I = [f (x0) + 3f (x1) + 3f (x2) + f (x3)
] 3h

8
(6.12)

and use Simpson’s 1/3 rule for the remaining panels. The error in Eq. (6.12) is of the
same order as in Eq. (6.10).

EXAMPLE 6.1
Derive Simpson’s 1/3 rule from the Newton–Cotes formulas.
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200 Numerical Integration

Solution Referring to Figure 6.4, Simpson’s 1/3 rule uses three nodes located at x0 =
a , x1 = (a + b

)
/2, and x2 = b. The spacing of the nodes is h = (b − a)/2. The cardinal

functions of Lagrange’s three-point interpolation are – see Section 3.2

�0(x) = (x − x1)(x − x2)
(x0 − x1)(x0 − x2)

�1(x) = (x − x0)(x − x2)
(x1 − x0)(x1 − x2)

�2(x) = (x − x0)(x − x1)
(x2 − x0)(x2 − x1)

The integration of these functions is easier if we introduce the variable ξ with origin
at x1. Then the coordinates of the nodes are ξ0 = −h, ξ1 = 0, ξ2 = h, and Eq. (6.2b)
becomes Ai = ∫ b

a �i (x) = ∫ h
−h �i (ξ )dξ . Therefore,

A 0 =
∫ h

−h

(ξ − 0)(ξ − h)
(−h)(−2h)

dξ = 1
2h2

∫ h

−h
(ξ2 − hξ )dξ = h

3

A 1 =
∫ h

−h

(ξ + h)(ξ − h)
(h)(−h)

dξ = − 1
h2

∫ h

−h
(ξ2 − h2)dξ = 4h

3

A 2 =
∫ h

−h

(ξ + h)(ξ − 0)
(2h)(h)

dξ = 1
2h2

∫ h

−h
(ξ2 + hξ )dξ = h

3

Equation (6.2a) then yields

I =
2∑

i=0

Ai f (xi ) =
[

f (a) + 4f
(

a + b
2

)
+ f (b)

]
h
3

which is Simpson’s 1/3 rule.

EXAMPLE 6.2
Evaluate the bounds on

∫ π

0 sin(x) dx with the composite trapezoidal rule using (1)
eight panels and (2) 16 panels.

Solution of Part (1) With eight panels there are nine nodes spaced at h = π/8. The
abscissas of the nodes are xi = iπ/8, i = 0, 1, . . . , 8. From Eq. (6.5) we get

I =
[

sin 0 + 2
7∑

i=1

sin
iπ
8

+ sin π

]
π

16
= 1.97423

The error is given by Eq. (6.6):

E = − (b − a)h2

12
f ′′(ξ ) = − (π − 0)(π/8)2

12
(− sin ξ ) = π3

768
sin ξ

where 0 < ξ < π . Because we do not know the value of ξ , we cannot evaluate E , but
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201 6.2 Newton–Cotes Formulas

we can determine its bounds:

Emin = π3

768
sin(0) = 0 Emax = π3

768
sin

π

2
= 0.040 37

Therefore, I + Emin <
∫ π

0 sin(x) dx < I + Emax, or

1.974 23 <

∫ π

0
sin(x) dx < 2.014 60

The exact integral is, of course, 2.

Solution of Part (2) The new nodes created by doubling of the panels are located at
the midpoints of the old panels. Their abscissas are

xj = π/16 + jπ/8 = (1 + 2 j )π/16, j = 0, 1, . . . , 7

Using the recursive trapezoidal rule in Eq. (6.9b), we get

I = 1.974 23
2

+ π

16

7∑
j=0

sin
(1 + 2 j )π

16
= 1. 993 58

and the bounds on the error become (note that E is quartered when h is halved)
Emin = 0, Emax = 0.040 37/4 = 0.010 09. Hence,

1.993 58 <

∫ π

0
sin(x) dx < 2.003 67

EXAMPLE 6.3
Estimate

∫ 2.5
0 f (x) dx from the data

x 0 0.5 1.0 1.5 2.0 2.5

f (x) 1.5000 2.0000 2.0000 1.6364 1.2500 0.9565

Solution We use Simpson’s rules because they are more accurate than the trape-
zoidal rule. Because the number of panels is odd, we compute the integral over the
first three panels by Simpson’s 3/8 rule, and use the 1/3 rule for the last two panels:

I = [
f (0) + 3f (0.5) + 3f (1.0) + f (1.5)

] 3(0.5)
8

+ [f (1.5) + 4f (2.0) + f (2.5)
] 0.5

3
= 2.8381 + 1.2655 = 4.1036

EXAMPLE 6.4
Use the recursive trapezoidal rule to evaluate

∫ π

0

√
x cos x dx to six decimal places.

How many panels are needed to achieve this result?

Solution The program listed here utilizes the function trapezoid.

#!/usr/bin/python

## example6_4

from math import sqrt,cos,pi

from trapezoid import *
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202 Numerical Integration

def f(x): return sqrt(x)*cos(x)

Iold = 0.0

for k in range(1,21):

Inew = trapezoid(f,0.0,pi,Iold,k)

if (k > 1) and (abs(Inew - Iold)) < 1.0e-6: break

Iold = Inew

print ’’Integral =’’,Inew

print ’’nPanels =’’,2**(k-1)

raw_input(’’\nPress return to exit’’))

The output from the program is:

Integral = -0.894831664853

nPanels = 32768

Hence,
∫ π

0

√
x cos x dx = −0.894 832, requiring 32,768 panels. The slow conver-

gence is the result of all the derivatives of f (x) being singular at x = 0. Consequently,
the error does not behave as shown in Eq. (6.7): E = c1h2 + c2h4 + · · · , but is unpre-
dictable. Difficulties of this nature can often be remedied by a change in variable. In
this case, we introduce t = √

x so that dt = dx/(2
√

x) = dx/(2t ), or dx = 2t dt . Thus,

∫ π

0

√
x cos x dx =

∫ √
π

0
2t 2 cos t 2dt

Evaluation of the integral on the right-hand side was completed with 4096 panels.

6.3 Romberg Integration

Romberg integration combines the trapezoidal rule with Richardson extrapolation
(see Section 5.3). Let us first introduce the notation

Ri,1 = Ii

where, as before, Ii represents the approximate value of
∫ b

a f (x)dx computed by the
recursive trapezoidal rule using 2i−1 panels. Recall that the error in this approxima-
tion is E = c1h2 + c2h4 + . . ., where

h = b − a
2i−1

is the width of a panel.
Romberg integration starts with the computation of R1,1 = I1 (one panel) and

R2,1 = I2 (two panels) from the trapezoidal rule. The leading error term c1h2 is then
eliminated by Richardson extrapolation. Using p = 2 (the exponent in the leading
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203 6.3 Romberg Integration

error term) in Eq. (5.9) and denoting the result by R2,2, we obtain

R2,2 = 22 R2,1 − R1,1

22−1
= 4

3
R2,1 − 1

3
R1,1 (a)

It is convenient to store the results in an array of the form

[
R1,1

R2,1 R2,2

]

The next step is to calculate R3,1 = I3 (four panels) and repeat the Richardson
extrapolation with R2,1 and R3,1, storing the result as R3,2:

R3,2 = 4
3

R3,1 − 1
3

R2,1 (b)

The elements of array R calculated so far are

⎡
⎢⎣R1,1

R2,1 R2,2

R3,1 R3,2

⎤
⎥⎦

Both elements of the second column have an error of the form c2h4, which can also
be eliminated with Richardson extrapolation. Using p = 4 in Eq. (5.9), we get

R3,3 = 24 R3,2 − R2,2

24−1
= 16

15
R3,2 − 1

15
R2,2 (c)

This result has an error of O(h6). The array has now expanded to

⎡
⎢⎣R1,1

R2,1 R2,2

R3,1 R3,2 R3,3

⎤
⎥⎦

After another round of calculations we get

⎡
⎢⎢⎢⎣

R1,1

R2,1 R2,2

R3,1 R3.2 R3,3

R4,1 R4,2 R4,3 R4,4

⎤
⎥⎥⎥⎦

where the error in R4,4 is O(h8). Note that the most accurate estimate of the integral is
always the last diagonal term of the array. This process is continued until the differ-
ence between two successive diagonal terms becomes sufficiently small. The general
extrapolation formula used in this scheme is

Ri, j = 4 j−1 Ri, j−1 − Ri−1, j−1

4 j−1 − 1
, i > 1, j = 2, 3, . . . , i (6.13a)
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204 Numerical Integration

A pictorial representation of Eq. (6.13a) is

Ri−1, j−1

↘
α

↘
Ri, j−1 → β → Ri, j

(6.13b)

where the multipliers α and β depend on j in the following manner:

j 2 3 4 5 6

α −1/3 −1/15 −1/63 −1/255 −1/1023
β 4/3 16/15 64/63 256/255 1024/1023

(6.13c)

The triangular array is convenient for hand computations, but computer imple-
mentation of the Romberg algorithm can be carried out within a one-dimensional
array R ′. After the first extrapolation – see Eq. (a) – R1,1 is never used again, so it can
be replaced with R2,2. As a result, we have the array[

R ′
1 = R2,2

R ′
2 = R2,1

]

In the second extrapolation round, defined by Eqs. (b) and (c), R3,2 overwrites R2,1

and R3,3 replaces R2,2, so the array contains⎡
⎢⎣ R ′

1 = R3,3

R ′
2 = R3,2

R ′
3 = R3,1

⎤
⎥⎦

and so on. In this manner, R ′
1 always contains the best current result. The extrapola-

tion formula for the kth round is

R ′
j = 4k− j R ′

j+1 − R ′
j

4k− j − 1
, j = k − 1, k − 2, . . . , 1 (6.14)

� romberg

The algorithm for Romberg integration is implemented in the function romberg. It
returns the integral and the number of panels used. Richardson’s extrapolation is car-
ried out by the subfunction richardson.

## module romberg

’’’ I,nPanels = romberg(f,a,b,tol=1.0e-6).

Romberg intergration of f(x) from x = a to b.

Returns the integral and the number of panels used.

’’’

from numpy import zeros

from trapezoid import *
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205 6.3 Romberg Integration

def romberg(f,a,b,tol=1.0e-6):

def richardson(r,k):

for j in range(k-1,0,-1):

const = 4.0**(k-j)

r[j] = (const*r[j+1] - r[j])/(const - 1.0)

return r

r = zeros(21)

r[1] = trapezoid(f,a,b,0.0,1)

r_old = r[1]

for k in range(2,21):

r[k] = trapezoid(f,a,b,r[k-1],k)

r = richardson(r,k)

if abs(r[1]-r_old) < tol*max(abs(r[1]),1.0):

return r[1],2**(k-1)

r_old = r[1]

print "Romberg quadrature did not converge"

EXAMPLE 6.5
Show that Rk,2 in Romberg integration is identical to the composite Simpson’s 1/3
rule in Eq. (6.10) with 2k−1 panels.

Solution Recall that in Romberg integration Rk,1 = Ik denoted the approximate in-
tegral obtained by the composite trapezoidal rule with n = 2k−1 panels. Denoting the
abscissas of the nodes by x0, x1, . . . , xn, we have from the composite trapezoidal rule
in Eq. (6.5)

Rk,1 = Ik =
[

f (x0) + 2
n−1∑
i=1

f (xi ) + f (xn)

]
h
2

When we halve the number of panels (panel width 2h), only the even-numbered ab-
scissas enter the composite trapezoidal rule, yielding

Rk−1,1 = Ik−1 =
⎡
⎣f (x0) + 2

n−2∑
i=2,4,...

f (xi ) + f (xn)

⎤
⎦h

Applying Richardson extrapolation yields

Rk,2 = 4
3

Rk,1 − 1
3

Rk−1,1

=
⎡
⎣1

3
f (x0) + 4

3

n−1∑
i=1,3,...

f (xi ) + 2
3

n−2∑
i=2,4,...

f (xi ) + 1
3

f (xn)

⎤
⎦h

which agrees with Eq. (6.10).
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206 Numerical Integration

EXAMPLE 6.6
Use Romberg integration to evaluate

∫ π

0 f (x) dx, where f (x) = sin x. Work with four
decimal places.

Solution From the recursive trapezoidal rule in Eq. (6.9b) we get

R1,1 = I (π) = π

2

[
f (0) + f (π)

] = 0

R2,1 = I (π/2) = 1
2

I (π) + π

2
f (π/2) = 1.5708

R3,1 = I (π/4) = 1
2

I (π/2) + π

4

[
f (π/4) + f (3π/4)

] = 1.8961

R4,1 = I (π/8) = 1
2

I (π/4) + π

8

[
f (π/8) + f (3π/8) + f (5π/8) + f (7π/8)

]
= 1.9742

Using the extrapolation formulas in Eqs. (6.13), we can now construct the following
table: ⎡

⎢⎢⎢⎣
R1,1

R2,1 R2,2

R3,1 R3.2 R3,3

R4,1 R4,2 R4,3 R4,4

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0
1.5708 2.0944
1.8961 2.0046 1.9986
1.9742 2.0003 2.0000 2.0000

⎤
⎥⎥⎥⎦

It appears that the procedure has converged. Therefore,
∫ π

0 sin x dx = R4,4 = 2.0000,
which is, of course, the correct result.

EXAMPLE 6.7
Use Romberg integration to evaluate

∫ √
π

0 2x2 cos x2 dx and compare the results with
Example 6.4.

Solution

#!/usr/bin/python

## example6_7

from math import cos,sqrt,pi

from romberg import *

def f(x): return 2.0*(x**2)*cos(x**2)

I,n = romberg(f,trapezoid,0,sqrt(pi))

print ’’Integral =’’,I

print ’’nPanels =’’,n

raw_input(’’\nPress return to exit’’)

The results of running the program are:

Integral = -0.894831469504

nPanels = 64
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207 6.3 Romberg Integration

It is clear that Romberg integration is considerably more efficient than the trape-
zoidal rule – it required 64 panels as compared to 4096 panels for the trapezoidal rule
in Example 6.4.

PROBLEM SET 6.1

1. Use the recursive trapezoidal rule to evaluate
∫ π/4

0 ln(1 + tan x)dx. Explain the
results.

2. The table shows the power P supplied to the driving wheels of a car as a function
of the speed v. If the mass of the car is m = 2000 kg, determine the time �t it
takes for the car to accelerate from 1 m/s to 6 m/s. Use the trapezoidal rule for
integration. Hint: �t = m

∫ 6s
1s (v/P) dv, which can be derived from Newton’s law

F = m(dv/dt ) and the definition of power P = Fv.

v (m/s) 0 1.0 1.8 2.4 3.5 4.4 5.1 6.0

P (kW) 0 4.7 12.2 19.0 31.8 40.1 43.8 43.2

3. Evaluate
∫ 1
−1 cos(2 cos−1 x)dx with Simpson’s 1/3 rule using 2, 4, and 6 panels.

Explain the results.
4. Determine

∫∞
1 (1 + x4)−1dx with the trapezoidal rule using five panels and com-

pare the result with the “exact” integral 0.243 75. Hint: use the transformation
x3 = 1/t .

x

F

5. The following table gives the pull F of the bow as a function of the draw x. If the
bow is drawn 0.5 m, determine the speed of the 0.075-kg arrow when it leaves
the bow. Hint: the kinetic energy of the arrow equals the work done in drawing
the bow; that is, mv2/2 = ∫ 0.5m

0 F dx.

x (m) 0.00 0.05 0.10 0.15 0.20 0.25

F (N) 0 37 71 104 134 161

x (m) 0.30 0.35 0.40 0.45 0.50

F (N) 185 207 225 239 250
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208 Numerical Integration

6. Evaluate
∫ 2

0

(
x5 + 3x3 − 2

)
dx by Romberg integration.

7. Estimate
∫ π

0 f (x) dx as accurately as possible, where f (x) is defined by the data

x 0 π/4 π/2 3π/4 π

f (x) 1.0000 0.3431 0.2500 0.3431 1.0000

8. Evaluate ∫ 1

0

sin x√
x

dx

with Romberg integration. Hint: use transformation of variables to eliminate the
singularity at x = 0.

9. Newton–Cotes formulas for evaluating
∫ b

a f (x) dx were based on polynomial ap-
proximations of f (x). Show that if y = f (x) is approximated by a natural cubic
spline with evenly spaced knots at x0, x1, . . . , xn, the quadrature formula be-
comes

I = h
2

(
y0 + 2y1 + 2y2 + · · · + 2yn−1 + yn

)

− h3

24

(
k0 + 2k1 + k2 + · · · + 2kn−1 + kn

)
where h is the distance between the knots and ki = y ′′

i . Note that the first part is
the composite trapezoidal rule; the second part may be viewed as a “correction”
for curvature.

10. � Evaluate ∫ π/4

0

dx√
sin x

with Romberg integration. Hint: use the transformation sin x = t 2.
11. � The period of a simple pendulum of length L is τ = 4

√
L/gh(θ0), where g is the

gravitational acceleration, θ0 represents the angular amplitude, and

h(θ0) =
∫ π/2

0

dθ√
1 − sin2(θ0/2) sin2 θ

Compute h(15◦), h(30◦), and h(45◦) and compare these values with h(0) = π/2
(the approximation used for small amplitudes).

12. �

a

r

P

q
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209 6.3 Romberg Integration

The figure shows an elastic half-space that carries uniform loading of intensity q
over a circular area of radius a . The vertical displacement of the surface at point
P can be shown to be

w(r ) = w0

∫ π/2

0

cos2 θ√
(r/a)2 − sin2 θ

dθ , r ≥ a

where w0 is the displacement at r = a . Use numerical integration to determine
w/w0 at r = 2a .

13. �

x

b

m

k

The mass m is attached to a spring of free length b and stiffness k. The coefficient
of friction between the mass and the horizontal rod is µ. The acceleration of the
mass can be shown to be (you may wish to prove this) ẍ = −f (x), where

f (x) = µg + k
m

(µb + x)
(

1 − b√
b2 + x2

)

If the mass is released from rest at x = b, its speed at x = 0 is given by

v0 =
√

2
∫ b

0
f (x)dx

Compute v0 by numerical integration using the data m = 0.8 kg, b = 0.4 m, µ =
0.3, k = 80 N/m, and g = 9.81 m/s2.

14. � Debye’s formula for the heat capacity CV of a solid is CV = 9Nkg(u), where

g(u) = u3
∫ 1/u

0

x4ex

(ex − 1)2
dx

The terms in this equation are

N = number of particles in the solid

k = Boltzmann constant

u = T/�D

T = absolute temperature

�D = Debye temperature

Compute g(u) from u = 0 to 1.0 in intervals of 0.05 and plot the results.
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210 Numerical Integration

15. � A power spike in an electric circuit results in the current

i(t ) = i0e−t/t0 sin(2t/t0)

across a resistor. The energy E dissipated by the resistor is

E =
∫ ∞

0
R
[
i(t )
]2

dt

Find E using the data i0 = 100 A, R = 0.5 �, and t0 = 0.01 s.
16. � An alternating electric current is described by

i(t ) = i0

(
sin

πt
t0

− β sin
2πt
t0

)

where i0 = 1 A, t0 = 0.05 s, and β = 0.2. Compute the root-mean-square current,
defined as

irms =
√

1
t0

∫ t0

0
i2(t ) dt

17. � (a) Derive the composite trapezoidal rule for unevenly spaced data. (b) Con-
sider the stress–strain diagram obtained from a uniaxial tension test.

σ

ε
0

A

εr

r

Rupture

The area under the diagram is

Ar =
∫ εr

ε=0
σ dε

where εr is the strain at rupture. This area represents the work that must be
performed on a unit volume of the test specimen in order to cause rupture;
it is called the modulus of toughness. Use the result of Part (a) to estimate the
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211 6.4 Gaussian Integration

modulus of toughness for nickel steel from the following test data:

σ (MPa) ε

586 0.001

662 0.025

765 0.045

841 0.068

814 0.089

122 0.122

150 0.150

Note that the spacing of data is uneven.

6.4 Gaussian Integration

Gaussian Integration Formulas

We found that the Newton–Cotes formulas for approximating
∫ b

a f (x)dx work best if
f (x) is a smooth function, such as a polynomial. This is also true for Gaussian quadra-
ture. However, Gaussian formulas are also good at estimating integrals of the form∫ b

a
w(x)f (x)dx (6.15)

where w(x), called the weighting function, can contain singularities, as long as they
are integrable. An example of such an integral is

∫ 1
0 (1 + x2) ln x dx. Sometimes infi-

nite limits, as in
∫∞

0 e−x sin x dx, can also be accommodated.
Gaussian integration formulas have the same form as the Newton–Cotes rules,

I =
n∑

i=0

Ai f (xi ) (6.16)

where, as before, I represents the approximation to the integral in Eq. (6.15). The dif-
ference lies in the way that the weights Ai and nodal abscissas xi are determined. In
Newton–Cotes integration the nodes were evenly spaced in (a , b), that is, their loca-
tions were predetermined. In Gaussian quadrature the nodes and weights are chosen
so that Eq. (6.16) yields the exact integral if f (x) is a polynomial of degree 2n + 1 or
less, that is, ∫ b

a
w(x)Pm(x)dx =

n∑
i=0

Ai Pm(xi ), m ≤ 2n + 1 (6.17)

One way of determining the weights and abscissas is to substitute P0(x) = 1, P1(x) =
x, . . . , P2n+1(x) = x2n+1 in Eq. (6.17) and solve the resulting 2n + 2 equations∫ b

a
w(x)x j dx =

n∑
i=0

Ai x j
i , j = 0, 1, . . . , 2n + 1

for the unknowns Ai and xi .
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212 Numerical Integration

As an illustration, let w(x) = e−x , a = 0, b = ∞, and n = 1. The four equations
determining x0, x1, A 0, and A 1 are∫ ∞

0
e−xdx = A 0 + A 1

∫ 1

0
e−x x dx = A 0x0 + A 1x1

∫ 1

0
e−x x2dx = A 0x2

0 + A 1x2
1

∫ 1

0
e−x x3dx = A 0x3

0 + A 1x3
1

After evaluating the integrals, we get

A 0 + A 1 = 1

A 0x0 + A 1x1 = 1

A 0x2
0 + A 1x2

1 = 2

A 0x3
0 + A 1x3

1 = 6

The solution is

x0 = 2 −
√

2 A 0 =
√

2 + 1

2
√

2

x1 = 2 +
√

2 A 1 =
√

2 − 1

2
√

2

so that the integration formula becomes∫ ∞

0
e−x f (x)dx ≈

1

2
√

2

[
(
√

2 + 1) f
(

2 −
√

2
)

+ (
√

2 − 1) f
(

2 +
√

2
)]

Because of the nonlinearity of the equations, this approach will not work well for
large n. Practical methods of finding xi and Ai require some knowledge of orthogo-
nal polynomials and their relationship to Gaussian quadrature. There are, however,
several “classical” Gaussian integration formulas for which the abscissas and weights
have been computed with great precision and tabulated. These formulas can be used
without knowing the theory behind them, because all one needs for Gaussian inte-
gration are the values of xi and Ai . If you do not intend to venture outside the classical
formulas, you can skip the next two topics of this article.

*Orthogonal Polynomials

Orthogonal polynomials are employed in many areas of mathematics and numerical
analysis. They have been studied thoroughly and many of their properties are known.
What follows is a very small compendium of a large topic.

The polynomials ϕn(x), n = 0, 1, 2, . . . (n is the degree of the polynomial) are
said to form an orthogonal set in the interval (a , b) with respect to the weighting
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213 6.4 Gaussian Integration

Name Symbol a b w(x)
∫ b

a w(x)
[
ϕn(x)

]2
dx

Legendre pn(x) −1 1 1 2/(2n + 1)
Chebyshev Tn(x) −1 1 (1 − x2)−1/2 π/2 (n > 0)
Laguerre Ln(x) 0 ∞ e−x 1
Hermite Hn(x) −∞ ∞ e−x2 √

π2nn!

Table 6.1

function w(x) if

∫ b

a
w(x)ϕm(x)ϕn(x)dx = 0, m �= n (6.18)

The set is determined, except for a constant factor, by the choice of the weighting
function and the limits of integration. That is, each set of orthogonal polynomials
is associated with certain w(x), a , and b. The constant factor is specified by stan-
dardization. Some of the classical orthogonal polynomials, named after well-known
mathematicians, are listed in Table 6.1. The last column in the table shows the stan-
dardization used.

Orthogonal polynomials obey recurrence relations of the form

anϕn+1(x) = (bn + cnx)ϕn(x) − dnϕn−1(x) (6.19)

If the first two polynomials of the set are known, the other members of the set can be
computed from Eq. (6.19). The coefficients in the recurrence formula, together with
ϕ0(x) and ϕ1(x), are given in Table 6.2.

The classical orthogonal polynomials are also obtainable from the formulas

pn(x) = (−1)n

2nn!
dn

dxn

[(
1 − x2)n]

Tn(x) = cos(n cos−1 x), n > 0

Ln(x) = ex

n!
dn

dxn

(
xne−x) (6.20)

Hn(x) = (−1)nex2 dn

dxn
(e−x2

)

Name ϕ0(x) ϕ1(x) an bn cn dn

Legendre 1 x n + 1 0 2n + 1 n
Chebyshev 1 x 1 0 2 1
Laguerre 1 1 − x n + 1 2n + 1 −1 n
Hermite 1 2x 1 0 2 2

Table 6.2
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214 Numerical Integration

and their derivatives can be calculated from

(1 − x2)p ′
n(x) = n

[−xpn(x) + pn−1(x)
]

(1 − x2)T ′
n(x) = n

[−xTn(x) + nTn−1(x)
]

x L ′
n(x) = n

[
Ln(x) − Ln−1(x)

]
(6.21)

H ′
n(x) = 2nHn−1(x)

Other properties of orthogonal polynomials that have relevance to Gaussian in-
tegration are:

• ϕn(x) has n real, distinct zeroes in the interval (a , b).
• The zeroes of ϕn(x) lie between the zeroes of ϕn+1(x).
• Any polynomial Pn(x) of degree n can be expressed in the form

Pn(x) =
n∑

i=0

ciϕi (x) (6.22)

• It follows from Eq. (6.22) and the orthogonality property in Eq. (6.18) that∫ b

a
w(x)Pn(x)ϕn+m(x)dx = 0, m ≥ 0 (6.23)

*Determination of Nodal Abscissas and Weights

Theorem The nodal abscissas x0, x1, . . . , xn are the zeroes of the polynomial ϕn+1(x)
that belongs to the orthogonal set defined in Eq. (6.18).

Proof We start the proof by letting f (x) = P2n+1(x) be a polynomial of degree 2n + 1.
Because the Gaussian integration with n + 1 nodes is exact for this polynomial,
we have ∫ b

a
w(x)P2n+1(x)dx =

n∑
i=0

Ai P2n+1(xi ) (a)

A polynomial of degree 2n + 1 can always be written in the form

P2n+1(x) = Qn(x) + Rn(x)ϕn+1(x) (b)

where Qn(x), Rn(x), and ϕn+1(x) are polynomials of the degree indicated by the
subscripts.2 Therefore,∫ b

a
w(x)P2n+1(x)dx =

∫ b

a
w(x)Qn(x)dx +

∫ b

a
w(x)Rn(x)ϕn+1(x)dx

But according to Eq. (6.23) the second integral on the right-hand side vanishes,
so that ∫ b

a
w(x)P2n+1(x)dx =

∫ b

a
w(x)Qn(x)dx (c)

2 It can be shown that Qn(x) and Rn(x) are unique for a given P2n+1(x) and ϕn+1(x).
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215 6.4 Gaussian Integration

Because a polynomial of degree n is uniquely defined by n + 1 points, it is al-
ways possible to find Ai such that

∫ b

a
w(x)Qn(x)dx =

n∑
i=0

Ai Qn(xi ) (d)

In order to arrive at Eq. (a), we must choose for the nodal abscissas xi the roots
of ϕn+1(x) = 0. According to Eq. (b), we then have

P2n+1(xi ) = Qn(xi ), i = 0, 1, . . . , n (e)

which, together with Eqs. (c) and (d), leads to

∫ b

a
w(x)P2n+1(x)dx =

∫ b

a
w(x)Qn(x)dx =

n∑
i=0

Ai P2n+1(xi )

This completes the proof.

Theorem

Ai =
∫ b

a
w(x)�i (x)dx, i = 0, 1, . . . , n (6.24)

where �i (x) are the Lagrange’s cardinal functions spanning the nodes at
x0, x1, . . . xn. These functions were defined in Eq. (4.2).

Proof Applying Lagrange’s formula, Eq. (4.1), to Qn(x) yields

Qn(x) =
n∑

i=0

Qn(xi )�i (x)

which, upon substitution in Eq. (d), gives us

n∑
i=0

[
Qn(xi )

∫ b

a
w(x)�i (x)dx

]
=

n∑
i=0

Ai Qn(xi )

or

n∑
i=0

Qn(xi )

[
Ai −

∫ b

a
w(x)�i (x)dx

]
= 0

This equation can be satisfied for arbitrary Q(x) of degree n only if

Ai −
∫ b

a
w(x)�i (x)dx = 0, i = 0, 1, . . . , n

which is equivalent to Eq. (6.24).

It is not difficult to compute the zeroes xi , i = 0, 1, . . . , n of a polynomial ϕn+1(x)
belonging to an orthogonal set by one of the methods discussed in Chapter 4. Once
the zeroes are known, the weights Ai , i = 0, 1, . . . , n could be found from Eq. (6.24).
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216 Numerical Integration

However, the following formulas (given without proof) are easier to compute:

Gauss–Legendre Ai = 2

(1 − x2
i )
[
p ′

n+1(xi )
]2

Gauss–Laguerre Ai = 1

xi
[

L ′
n+1(xi )

]2 (6.25)

Gauss–Hermite Ai = 2n+2 (n + 1)!
√

π[
H ′

n+1(xi )
]2

Abscissas and Weights for Classical Gaussian Quadratures

Here we list some classical Gaussian integration formulas. The tables of nodal ab-
scissas and weights, covering n = 1 to 5, have been rounded off to six decimal places.
These tables should be adequate for hand computation, but in programming you
may need more precision or a larger number of nodes. In that case you should consult
other references3 or use a subroutine to compute the abscissas and weights within
the integration program.4

The truncation error in Gaussian quadrature

E =
∫ b

a
w(x)f (x)dx −

n∑
i=0

Ai f (xi )

has the form E = K (n)f (2n+2)(c), where a < c < b (the value of c is unknown; only
its bounds are given). The expression for K (n) depends on the particular quadrature
being used. If the derivatives of f (x) can be evaluated, the error formulas are useful
in estimating the error bounds.

Gauss–Legendre Quadrature

∫ 1

−1
f (ξ )dξ ≈

n∑
i=0

Ai f (ξi ) (6.26)

This is the most-often-used Gaussian integration formula (see Table 6.3). The
nodes are arranged symmetrically about ξ = 0, and the weights associated with a
symmetric pair of nodes are equal. For example, for n = 1 we have ξ0 = −ξ1 and
A 0 = A 1. The truncation error in Eq. (6.26) is

E = 22n+3
[
(n + 1)!

]4
(2n + 3)

[
(2n + 2)!

]3 f (2n+2)(c), − 1 < c < 1 (6.27)

To apply Gauss–Legendre quadrature to the integral
∫ b

a f (x)dx, we must first map
the integration range (a , b) into the “standard” range (−1, 1)̇. We can accomplish this

3 M. Abramowitz, and I. A. Stegun, Handbook of Mathematical Functions (Dover Publications, 1965).
A. H. Stroud and D. Secrest, Gaussian Quadrature Formulas (Prentice-Hall, 1966).

4 Several such subroutines are listed in W. H. Press et al, Numerical Recipes in Fortran 90 (Cambridge
University Press, 1996).
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217 6.4 Gaussian Integration

±ξi Ai ±ξi Ai

n = 1 n = 4
0.577 350 1.000 000 0.000 000 0.568 889

n = 2 0.538 469 0.478 629
0.000 000 0.888 889 0.906 180 0.236 927
0.774 597 0.555 556 n = 5

n = 3 0.238 619 0.467 914
0.339 981 0.652 145 0.661 209 0.360 762
0.861 136 0.347 855 0.932 470 0.171 324

Table 6.3

by the transformation

x = b + a
2

+ b − a
2

ξ (6.28)

Now dx = dξ (b − a)/2, and the quadrature becomes∫ b

a
f (x)dx ≈

b − a
2

n∑
i=1

Ai f (xi ) (6.29)

where the abscissas xi must be computed from Eq. (6.28). The truncation error here
is

E = (b − a)2n+3
[
(n + 1)!

]4
(2n + 3)

[
(2n + 2)!

]3 f (2n+2)(c), a < c < b (6.30)

Gauss–Chebyshev Quadrature

∫ 1

−1

(
1 − x2)−1/2

f (x)dx ≈

π

n + 1

n∑
i=0

f (xi ) (6.31)

Note that all the weights are equal: Ai = π/ (n + 1). The abscissas of the nodes, which
are symmetric about x = 0, are given by

xi = cos
(2i + 1)π

2n + 2
(6.32)

The truncation error is

E = 2π

22n+2(2n + 2)!
f (2n+2)(c), − 1 < c < 1 (6.33)

Gauss–Laguerre Quadrature

∫ ∞

0
e−x f (x)dx ≈

n∑
i=0

Ai f (xi ) (6.34)

where the weights and the abscissas are given in Table 6.4.
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218 Numerical Integration

xi Ai xi Ai

n = 1 n = 4
0.585 786 0.853 554 0.263 560 0.521 756
3.414 214 0.146 447 1.413 403 0.398 667

n = 2 3.596 426 (−1)0.759 424
0.415 775 0.711 093 7.085 810 (−2)0.361 175
2.294 280 0.278 517 12.640 801 (−4)0.233 670
6.289 945 (−1)0.103 892 n = 5

n = 3 0.222 847 0.458 964
0.322 548 0.603 154 1.188 932 0.417 000
1.745 761 0.357 418 2.992 736 0.113 373
4.536 620 (−1)0.388 791 5.775 144 (−1)0.103 992
9.395 071 (−3)0.539 295 9.837 467 (−3)0.261 017

15.982 874 (−6)0.898 548

Table 6.4 Multiply numbers by 10k , where k is given in parentheses

E =
[
(n + 1)!

]2
(2n + 2)!

f (2n+2)(c), 0 < c < ∞ (6.35)

Gauss–Hermite Quadrature

∫ ∞

−∞
e−x2

f (x)dx ≈

n∑
i=0

Ai f (xi ) (6.36)

The nodes are placed symmetrically abut x = 0 as indicated in Table 6.5.

E =
√

π(n + 1)!
22(2n + 2)!

f (2n+2)(c), 0 < c < ∞ (6.37)

±xi Ai ±xi Ai

n = 1 n = 4
0.707 107 0.886 227 0.000 000 0.945 308

n = 2 0.958 572 0.393 619
0.000 000 1.181 636 2.020 183 (−1) 0.199 532
1.224745 0.295 409 n = 5

n = 3 0.436 077 0.724 629
0.524 648 0.804 914 1.335 849 0.157 067
1.650 680 (−1)0.813 128 2.350 605 (−2)0.453 001

Table 6.5 Multiply numbers by 10k , where k is given in parentheses
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219 6.4 Gaussian Integration

Gauss Quadrature with Logarithmic Singularity

∫ 1

0
f (x) ln(x)dx ≈ −

n∑
i=0

Ai f (xi ) (6.38)

The weights and the abscissas are given in Table 6.6.

E = k(n)
(2n + 1)!

f (2n+1)(c), 0 < c < 1 (6.39)

where k(1) = 0.00 285, k(2) = 0.000 17, k(3) = 0.000 01.

xi Ai xi Ai

n = 1 n = 4
0.112 009 0.718 539 (−1)0.291 345 0.297 893
0.602 277 0.281 461 0.173 977 0.349 776

n = 2 0.411 703 0.234 488
(−1)0.638 907 0.513 405 0.677314 (−1)0.989 305

0.368 997 0.391 980 0.894 771 (−1)0.189 116
0.766 880 (−1)0.946 154 n = 5

n = 3 (−1)0.216 344 0.238 764
(−1)0.414 485 0.383 464 0.129 583 0.308 287

0.245 275 0.386 875 0.314 020 0.245 317
0.556 165 0.190 435 0.538 657 0.142 009
0.848 982 (−1)0.392 255 0.756 916 (−1)0.554 546

0.922 669 (−1)0.101 690

Table 6.6 Multiply numbers by 10k , where k is given in parentheses

� gaussNodes

The function gaussNodes listed here5 computes the nodal abscissas xi and the corre-
sponding weights Ai used in Gauss–Legendre quadrature over the “standard” interval
(−1, 1). It can be shown that the approximate values of the abscissas are

xi = cos
π(i + 0.75)

m + 0.5

where m = n + 1 is the number of nodes, also called the integration order. Using these
approximations as the starting values, the nodal abscissas are computed by finding
the nonnegative zeroes of the Legendre polynomial pm(x) with Newton’s method (the
negative zeroes are obtained from symmetry). Note that gaussNodes calls the sub-
function legendre, which returns pm(t ) and its derivative as the tuple (p,dp).

5 This function is an adaptation of a routine in W. H. Press et al., Numerical Recipes in Fortran 90
(Cambridge University Press, 1996).

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:41 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.008

Cambridge Books Online © Cambridge University Press, 2016



220 Numerical Integration

## module gaussNodes

’’’ x,A = gaussNodes(m,tol=10e-9)

Returns nodal abscissas {x} and weights {A} of

Gauss--Legendre m-point quadrature.

’’’

from math import cos,pi

from numpy import zeros

def gaussNodes(m,tol=10e-9):

def legendre(t,m):

p0 = 1.0; p1 = t

for k in range(1,m):

p = ((2.0*k + 1.0)*t*p1 - k*p0)/(1.0 + k )

p0 = p1; p1 = p

dp = m*(p0 - t*p1)/(1.0 - t**2)

return p,dp

A = zeros(m)

x = zeros(m)

nRoots = (m + 1)/2 # Number of non-neg. roots

for i in range(nRoots):

t = cos(pi*(i + 0.75)/(m + 0.5)) # Approx. root

for j in range(30):

p,dp = legendre(t,m) # Newton-Raphson

dt = -p/dp; t = t + dt # method

if abs(dt) < tol:

x[i] = t; x[m-i-1] = -t

A[i] = 2.0/(1.0 - t**2)/(dp**2) # Eq.(6.25)

A[m-i-1] = A[i]

break

return x,A

� gaussQuad

The function gaussQuad utilizes gaussNodes to evaluate
∫ b

a f (x) dx with Gauss–
Legendre quadrature using m nodes. The function routine for f (x) must be supplied
by the user.

## module gaussQuad

’’’ I = gaussQuad(f,a,b,m).

Computes the integral of f(x) from x = a to b

with Gauss--Legendre quadrature using m nodes.

’’’

from gaussNodes import *
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221 6.4 Gaussian Integration

def gaussQuad(f,a,b,m):

c1 = (b + a)/2.0

c2 = (b - a)/2.0

x,A = gaussNodes(m)

sum = 0.0

for i in range(len(x)):

sum = sum + A[i]*f(c1 + c2*x[i])

return c2*sum

EXAMPLE 6.8
Evaluate

∫ 1
−1(1 − x2)3/2dx as accurately as possible with Gaussian integration.

Solution As the integrand is smooth and free of singularities, we could use Gauss–
Legendre quadrature. However, the exact integral can be obtained with the Gauss–
Chebyshev formula. We write

∫ 1

−1

(
1 − x2)3/2

dx =
∫ 1

−1

(
1 − x2

)2

√
1 − x2

dx

The numerator f (x) = (1 − x2)2 is a polynomial of degree 4, so that Gauss–Chebyshev
quadrature is exact with three nodes.

The abscissas of the nodes are obtained from Eq. (6.32). Substituting n = 2, we
get

xi = cos
(2i + 1)π

6
, i = 0, 1, 2

Therefore,

x0 = cos
π

6
=

√
3

2

x1 = cos
π

2
= 0

x2 = cos
5π

6
=

√
3

2

and Eq. (6.31) yields

∫ 1

−1

(
1 − x2)3/2

dx ≈

π

3

2∑
i=0

(
1 − x2

i

)2

= π

3

[(
1 − 3

4

)2

+ (1 − 0)2 +
(

1 − 3
4

)2
]

= 3π

8

EXAMPLE 6.9
Use Gaussian integration to evaluate

∫ 0.5
0 cos πx ln x dx.

Solution We split the integral into two parts:

∫ 0.5

0
cos πx ln x dx =

∫ 1

0
cos πx ln x dx −

∫ 1

0.5
cos πx ln x dx
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222 Numerical Integration

The first integral on the right-hand side, which contains a logarithmic singularity at
x = 0, can be computed with the special Gaussian quadrature in Eq. (6.38). Choosing
n = 3, we have

∫ 1

0
cos πx ln x dx ≈ −

3∑
i=0

Ai cos πxi

The sum is evaluated in the following table:

xi cos πxi Ai Ai cos πxi

0.041 448 0.991 534 0.383 464 0.380 218
0.245 275 0.717 525 0.386 875 0.277 592
0.556 165 −0.175 533 0.190 435 −0.033 428
0.848 982 −0.889 550 0.039 225 −0.034 892

� = 0.589 490

Thus, ∫ 1

0
cos πx ln x dx ≈ −0.589 490

The second integral is free of singularities, so it can be evaluated with Gauss–
Legendre quadrature. Choosing n = 3, we have

∫ 1

0.5
cos πx ln x dx ≈ 0.25

3∑
i=0

Ai cos πxi ln xi

where the nodal abscissas are – see Eq. (6.28)

xi = 1 + 0.5
2

+ 1 − 0.5
2

ξi = 0.75 + 0.25ξi

Looking up ξi and Ai in Table 6.3 leads to the following computations:

ξi xi cos πxi ln xi Ai Ai cos πxi ln xi

−0.861 136 0.534 716 0.068 141 0.347 855 0.023 703
−0.339 981 0.665 005 0.202 133 0.652 145 0.131 820

0.339 981 0.834 995 0.156 638 0.652 145 0.102 151
0.861 136 0.965 284 0.035 123 0.347 855 0.012 218

� = 0.269 892

from which

∫ 1

0.5
cos πx ln x dx ≈ 0.25(0.269 892) = 0.067 473

Therefore,∫ 1

0
cos πx ln x dx ≈ −0. 589 490 − 0.067 473 = −0. 656 96 3

which is correct to six decimal places.
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223 6.4 Gaussian Integration

EXAMPLE 6.10
Evaluate as accurately as possible

F =
∫ ∞

0

x + 3√
x

e−xdx

Solution In its present form, the integral is not suited to any of the Gaussian quadra-
tures listed in this section. But using the transformation

x = t 2 dx = 2t dt

the integral becomes

F = 2
∫ ∞

0
(t 2 + 3)e−t 2

dt =
∫ ∞

−∞
(t 2 + 3)e−t 2

dt

which can be evaluated exactly with the Gauss–Hermite formula using only two
nodes (n = 1). Thus,

F = A 0(t 2
0 + 3) + A 1(t 2

1 + 3)

= 0.886 227
[
(0.707 107)2 + 3

]+ 0.886 227
[
(−0.707 107)2 + 3

]
= 6. 203 59

EXAMPLE 6.11
Determine how many nodes are required to evaluate∫ π

0

(
sin x

x

)2

dx

with Gauss–Legendre quadrature to six decimal places. The exact integral, rounded
to six places, is 1.418 15.

Solution The integrand is a smooth function, hence it is suited for Gauss–Legendre
integration. There is an indeterminacy at x = 0, but this does not bother the quadra-
ture because the integrand is never evaluated at that point. We used the following
program that computes the quadrature with 2, 3, . . . nodes until the desired accuracy
is reached:

## example 6_11

from math import pi,sin

from gaussQuad import *

def f(x): return (sin(x)/x)**2

a = 0.0; b = pi;

Iexact = 1.41815

for m in range(2,12):

I = gaussQuad(f,a,b,m)

if abs(I - Iexact) < 0.00001:

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:41 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.008

Cambridge Books Online © Cambridge University Press, 2016



224 Numerical Integration

print ’’Number of nodes =’’,m

print ’’Integral =’’, gaussQuad(f,a,b,m)

break

raw_input(’’\nPress return to exit’’)

The program output is

Number of nodes = 5

Integral = 1.41815026778

EXAMPLE 6.12
Evaluate numerically

∫ 3
1.5 f (x) dx, where f (x) is represented by the unevenly spaced

data

x 1.2 1.7 2.0 2.4 2.9 3.3

f (x) −0.362 36 0.128 84 0.416 15 0.737 39 0.970 96 0.987 48

Knowing that the data points lie on the curve f (x) = − cos x, evaluate the accuracy of
the solution.

Solution We approximate f (x) by the polynomial P5(x) that intersects all the data
points, and then evaluate

∫ 3
1.5 f (x)dx ≈

∫ 3
1.5 P5(x)dx with the Gauss–Legendre for-

mula. Because the polynomial is of degree 5, only three nodes (n = 2) are required
in the quadrature.

From Eq. (6.28) and Table 6.6, we obtain for the abscissas of the nodes

x0 = 3 + 1.5
2

+ 3 − 1.5
2

(−0.774597) = 1. 6691

x1 = 3 + 1.5
2

= 2.25

x2 = 3 + 1.5
2

+ 3 − 1.5
2

(0.774597) = 2. 8309

We now compute the values of the interpolant P5(x) at the nodes. This can be done
using the modules newtonPoly or neville listed in Section 3.2. The results are

P5(x0) = 0.098 08 P5(x1) = 0.628 16 P5(x2) = 0.952 16

From Gauss–Legendre quadrature

I =
∫ 3

1.5
P5(x)dx = 3 − 1.5

2

2∑
i=0

Ai P5(xi )

we get

I = 0.75 [0.555 556(0.098 08) + 0.888 889(0.628 16) + 0.555 556(0.952 16)]

= 0.856 37

Comparison with − ∫ 3
1.5 cos x dx = 0. 856 38 shows that the discrepancy is within the

roundoff error.
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225 6.4 Gaussian Integration

PROBLEM SET 6.2

1. Evaluate ∫ π

1

ln(x)
x2 − 2x + 2

dx

with Gauss–Legendre quadrature. Use (a) two nodes, and (b) four nodes.
2. Use Gauss–Laguerre quadrature to evaluate

∫∞
0 (1 − x2)3e−x dx.

3. Use Gauss–Chebyshev quadrature with six nodes to evaluate∫ π/2

0

dx√
sin x

Compare the result with the “exact” value 2.62206. Hint: substitute sin x = t 2.
4. The integral

∫ π

0 sin x dx is evaluated with Gauss–Legendre quadrature using four
nodes. What are the bounds on the truncation error resulting from the quadra-
ture?

5. How many nodes are required in Gauss–Laguerre quadrature to evaluate∫∞
0 e−x sin x dx to six decimal places?

6. Evaluate as accurately as possible∫ 1

0

2x + 1√
x(1 − x)

dx

Hint: substitute x = (1 + t )/2.
7. Compute

∫ π

0 sin x ln x dx to four decimal places.
8. Calculate the bounds on the truncation error if

∫ π

0 x sin x dx is evaluated with
Gauss–Legendre quadrature using three nodes. What is the actual error?

9. Evaluate
∫ 2

0

(
sinh x/x

)
dx to four decimal places.

10. � Evaluate the integral ∫ ∞

0

x dx
ex + 1

by Gauss–Legendre quadrature to six decimal places. Hint: substitute ex =
ln(1/t ).

11. � The equation of an ellipse is x2/a 2 + y2/b2 = 1. Write a program that computes
the length

S = 2
∫ a

−a

√
1 + (dy/dx)2 dx

of the circumference to five decimal places for a given a and b. Test the program
with a = 2 and b = 1.

12. � The error function, which is of importance in statistics, is defined as

erf(x) = 2√
π

∫ x

0
e−t 2

dt

Write a program that uses Gauss–Legendre quadrature to evaluate erf(x) for a
given x to six decimal places. Note that erf(x) = 1.000 000 (correct to six decimal
places) when x > 5. Test the program by verifying that erf(1.0) = 0.842 701.
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226 Numerical Integration

13. �

m

k

L

L

A
B

The sliding weight of mass m is attached to a spring of stiffness k that has an
undeformed length L. When the mass is released from rest at B, the time it takes
to reach A can be shown to be t = C

√
m/k, where

C =
∫ 1

0

[(√
2 − 1

)2
−
(√

1 + z2 − 1
)2
]−1/2

dz

Compute C to six decimal places. Hint: the integrand has singularity at z = 1 that
behaves as (1 − z2)−1/2.

14. �

x

P

y

A

h

b
B

A uniform beam forms the semiparabolic cantilever arch A B. The vertical dis-
placement of A due to the force P can be shown to be

δA = Pb3

E I
C
(

h
b

)

where E I is the bending rigidity of the beam and

C
(

h
b

)
=
∫ 1

0
z2

√
1 +

(
2h
b

z
)2

dz

Write a program that computes C(h/b) for any given value of h/b to four decimal
places. Use the program to compute C(0.5), C(1.0), and C(2.0).
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227 ∗6.5 Multiple Integrals

15. � There is no elegant way to compute I = ∫ π/2
0 ln(sin x) dx. A “brute force”

method that works is to split the integral into several parts: from x = 0 to 0.01,
from 0.01 to 0.2, and from x = 0.02 to π/2. In the first part, we can use the approx-
imation sin x ≈ x, which allows us to obtain the integral analytically. The other
two parts can be evaluated with Gauss–Legendre quadrature. Use this method to
evaluate I to six decimal places.

16. �

p (Pa)

620

612

575

530

425
3100

15

35

52

80

112
h (m)

The pressure of wind was measured at various heights on a vertical wall, as shown
on the diagram. Find the height of the pressure center, which is defined as

h̄ =
∫ 112 m

0 h p(h) dh∫ 112 m
0 p(h) dh

Hint: fit a cubic polynomial to the data and then apply Gauss–Legendre quadra-
ture.

17. � Write a function that computes
∫ xn

x1
y(x) dx from a given set of data points of

the form

x1 x2 x3 · · · xn

y1 y2 y3 · · · yn

The function must work for unevenly spaced x-values. Test the function with the
data given in Prob. 17, Problem Set 6.1. Hint: fit a cubic spline to the data points
and apply Gauss–Legendre quadrature to each segment of the spline.

∗6.5 Multiple Integrals

Multiple integrals, such as the area integral
∫ ∫

A f (x, y) dx dy , can also be evaluated
by quadrature. The computations are straightforward if the region of integration has
a simple geometric shape, such as a triangle or a quadrilateral. Because of complica-
tions in specifying the limits of integration on x and y , quadrature is not a practical
means of evaluating integrals over irregular regions. However, an irregular region A
can always be approximated as an assembly triangular or quadrilateral subregions
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228 Numerical Integration

Boundary of region A
Ai

Figure 6.6. Finite element model of an irregular region.

A 1, A 2, . . ., called finite elements, as illustrated in Fig. 6.6. The integral over A can then
be evaluated by summing the integrals over the finite elements:∫ ∫

A
f (x, y) dx dy ≈

∑
i

∫ ∫
Ai

f (x, y) dx dy

Volume integrals can be computed in a similar manner, using tetrahedra or rectan-
gular prisms for the finite elements.

Gauss–Legendre Quadrature over a Quadrilateral Element

Consider the double integral

I =
∫ 1

−1

∫ 1

−1
f (ξ , η) dη dξ

over the rectangular element shown in Fig. 6.7(a). Evaluating each integral in turn
by Gauss–Legendre quadrature using n + 1 integration points in each coordinate

ξ

η
1

1
11

0

0 x

y

1
2

3
4

η = 1

η = −1

ξ = 1ξ = −1

(b)(a)
Figure 6.7. Mapping a quadrilateral into the standard rectangle.
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229 ∗6.5 Multiple Integrals

direction, we obtain

I =
∫ 1

−1

n∑
i=0

Ai f (ξi , η) dη =
n∑

j=0

A j

[
n∑

i=0

Ai f (ξi , ηi )

]

or

I =
n∑

i=0

n∑
j=0

Ai A j f (ξi , η j ) (6.40)

As noted previously, the number of integration points in each coordinate direction,
m = n + 1, is called the integration order. Figure 6.7(a) shows the locations of the inte-
gration points used in third-order integration (m = 3). Because the integration limits
were the “standard” limits (−1, 1) of Gauss–Legendre quadrature, the weights and the
coordinates of the integration points are as listed in Table 6.3.

In order to apply quadrature to the quadrilateral element in Fig. 6.7(b), we must
first map the quadrilateral into the “standard” rectangle in Fig. 6.7(a). By mapping
we mean a coordinate transformation x = x(ξ , η), y = y(ξ , η) that results in one-to-
one correspondence between points in the quadrilateral and in the rectangle. The
transformation that does the job is

x(ξ , η) =
4∑

k=1

Nk (ξ , η)xk y(ξ , η) =
4∑

k=1

Nk (ξ , η)yk (6.41)

where (xk , yk ) are the coordinates of corner k of the quadrilateral and

N1(ξ , η) = 1
4

(1 − ξ )(1 − η)

N2(ξ , η) = 1
4

(1 + ξ )(1 − η) (6.42)

N3(ξ , η) = 1
4

(1 + ξ )(1 + η)

N4(ξ , η) = 1
4

(1 − ξ )(1 + η)

The functions Nk (ξ , η), known as the shape functions, are bilinear (linear in each co-
ordinate). Consequently, straight lines remain straight upon mapping. In particular,
note that the sides of the quadrilateral are mapped into the lines ξ = ±1 and η = ±1.

Because mapping distorts areas, an infinitesimal area element dA = dx dy of the
quadrilateral is not equal to its counterpart dA ′ = dξ dη of the rectangle. It can be
shown that the relationship between the areas is

dx dy = |J (ξ , η)| dξ dη (6.43)

where

J (ξ , η) =

⎡
⎢⎣

∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

⎤
⎥⎦ (6.44a)
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230 Numerical Integration

is the known as the Jacobian matrix of the mapping. Substituting from Eqs. (6.41) and
(6.42) and differentiating, the components of the Jacobian matrix are

J11 = 1
4

[−(1 − η)x1 + (1 − η)x2 + (1 + η)x3 − (1 − η)x4]

J12 = 1
4

[−(1 − η)y1 + (1 − η)y2 + (1 + η)y3 − (1 − η)y4] (6.44b)

J21 = 1
4

[−(1 − ξ )x1 − (1 + ξ )x2 + (1 + ξ )x3 + (1 − ξ )x4]

J22 = 1
4

[−(1 − ξ )y1 − (1 + ξ )y2 + (1 + ξ )y3 + (1 − ξ )y4]

We can now write∫ ∫
A

f (x, y) dx dy =
∫ 1

−1

∫ 1

−1
f [x(ξ , η), y(ξ , η)] |J (ξ , η)| dξ dη (6.45)

Because the right-hand-side integral is taken over the “standard” rectangle, it can be
evaluated using Eq. (6.40). Replacing f (ξ , η) in Eq. (6.40) by the integrand in Eq. (6.45),
we get the following formula for Gauss–Legendre quadrature over a quadrilateral re-
gion:

I =
n∑

i=0

n∑
j=0

Ai A j f
[
x(ξi , η j ), y(ξi , η j )

] ∣∣J (ξi , η j )
∣∣ (6.46)

The ξ and η coordinates of the integration points and the weights can again be ob-
tained from Table 6.3.

� gaussQuad2

The function gaussQuad2 in this module computes
∫ ∫

A f (x, y) dx dy over a quadri-
lateral element with Gauss–Legendre quadrature of integration order m. The quadri-
lateral is defined by the arrays x and y, which contain the coordinates of the four cor-
ners ordered in a counterclockwise direction around the element. The determinant of
the Jacobian matrix is obtained by calling the function jac; mapping is performed by
map. The weights and the values of ξ and η at the integration points are computed by
gaussNodes listed in the previous section (note that ξ and η appear as s and t in the
listing).

from gaussNodes import *

from numpy import zeros,dot

def gaussQuad2(f,x,y,m):

def jac(x,y,s,t):

J = zeros((2,2))

J[0,0] = -(1.0 - t)*x[0] + (1.0 - t)*x[1] \

+ (1.0 + t)*x[2] - (1.0 + t)*x[3]

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:41 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.008

Cambridge Books Online © Cambridge University Press, 2016



231 ∗6.5 Multiple Integrals

J[0,1] = -(1.0 - t)*y[0] + (1.0 - t)*y[1] \

+ (1.0 + t)*y[2] - (1.0 + t)*y[3]

J[1,0] = -(1.0 - s)*x[0] - (1.0 + s)*x[1] \

+ (1.0 + s)*x[2] + (1.0 - s)*x[3]

J[1,1] = -(1.0 - s)*y[0] - (1.0 + s)*y[1] \

+ (1.0 + s)*y[2] + (1.0 - s)*y[3]

return (J[0,0]*J[1,1] - J[0,1]*J[1,0])/16.0

def map(x,y,s,t):

N = zeros(4)

N[0] = (1.0 - s)*(1.0 - t)/4.0

N[1] = (1.0 + s)*(1.0 - t)/4.0

N[2] = (1.0 + s)*(1.0 + t)/4.0

N[3] = (1.0 - s)*(1.0 + t)/4.0

xCoord = dot(N,x)

yCoord = dot(N,y)

return xCoord,yCoord

s,A = gaussNodes(m)

sum = 0.0

for i in range(m):

for j in range(m):

xCoord,yCoord = map(x,y,s[i],s[j])

sum = sum + A[i]*A[j]*jac(x,y,s[i],s[j]) \

*f(xCoord,yCoord)

return sum

EXAMPLE 6.13

x

y

1

2
3

4

2 2

3

Evaluate the integral

I =
∫ ∫

A

(
x2 + y

)
dx dy

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:41 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.008

Cambridge Books Online © Cambridge University Press, 2016



232 Numerical Integration

analytically by first transforming it from the quadrilateral region A shown to the
“standard” rectangle.

Solution The corner coordinates of the quadrilateral are

xT =
[

0 2 2 0
]

yT =
[

0 0 3 2
]

The mapping is

x(ξ , η) =
4∑

k=1

Nk (ξ , η)xk

= 0 + (1 + ξ )(1 − η)
4

(2) + (1 + ξ )(1 + η)
4

(2) + 0

= 1 + ξ

y(ξ , η) =
4∑

k=1

Nk (ξ , η)yk

= 0 + 0 + (1 + ξ )(1 + η)
4

(3) + (1 − ξ )(1 + η)
4

(2)

= (5 + ξ )(1 + η)
4

which yields for the Jacobian matrix

J (ξ , η) =

⎡
⎢⎣

∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

⎤
⎥⎦ =

⎡
⎢⎣1

1 + η

4
0

5 + ξ

4

⎤
⎥⎦

Thus, the area scale factor is

|J (ξ , η)| = 5 + ξ

4

Now we can map the integral from the quadrilateral to the standard rectangle. Refer-
ring to Eq. (6.45), we obtain

I =
∫ 1

−1

∫ 1

−1

[(
1 + ξ

2

)2

+ (5 + ξ )(1 + η)
4

]
5 + ξ

4
dξ dη

=
∫ 1

−1

∫ 1

−1

(
15
8

+ 21
16

ξ + 1
2
ξ2 + 1

16
ξ3 + 25

16
η + 5

8
ξη + 1

16
ξ2η

)
dξ dη

If we note that only even powers of ξ and η contribute to the integral, the integral
simplifies to

I =
∫ 1

−1

∫ 1

−1

(
15
8

+ 1
2
ξ2
)

dξ dη = 49
6
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EXAMPLE 6.14
Evaluate the integral ∫ 1

−1

∫ 1

−1
cos

πx
2

cos
πy
2

dx dy

by Gauss–Legendre quadrature of order 3.

Solution From the quadrature formula in Eq. (6.40), we have

I =
2∑

i=0

2∑
j=0

Ai A j cos
πxi

2
cos

πy j

2

a

a a

a b

b

b b

y

−1 10

1

−1

0 x

The integration points are shown in the figure; their coordinates, and the cor-
responding weights are listed in Table 6.3. Note that the integrand, the integration
points, and the weights are all symmetric about the coordinate axes. It follows that
the points labeled a contribute equal amounts to I ; the same is true for the points
labeled b. Therefore,

I = 4(0.555 556)2 cos2 π(0.774 597)
2

+4(0.555 556)(0.888 889) cos
π(0.774 597)

2
cos

π(0)
2

+(0.888 889)2 cos2 π(0)
2

= 1.623 391

The exact value of the integral is 16/π2 ≈ 1.621 139.

EXAMPLE 6.15
Utilize gaussQuad2 to evaluate I = ∫ ∫A f (x, y) dx dy over the quadrilateral shown,
where

f (x, y) = (x − 2)2(y − 2)2

Use enough integration points for an “exact” answer.
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x

y

1

3
4

2

34

41

1

Solution The required integration order is determined by the integrand in Eq. (6.45):

I =
∫ 1

−1

∫ 1

−1
f [x(ξ , η), y(ξ , η)] |J (ξ , η)| dξ dη (a)

We note that |J (ξ , η)|, defined in Eqs. (6.44), is biquadratic. Because the specified
f (x, y) is also biquadratic, the integrand in Eq. (a) is a polynomial of degree 4 in both
ξ and η. Thus, third-order integration is sufficient for an “exact” result.

#!/usr/bin/python

## example 6_15

from gaussQuad2 import *

from numpy import array

def f(x,y): return ((x - 2.0)**2)*((y - 2.0)**2)

x = array([0.0, 4.0, 4.0, 1.0])

y = array([0.0, 1.0, 4.0, 3.0])

m = eval(raw_input(’’Integration order ==> ’’))

print ’’Integral =’’, gaussQuad2(gaussNodes,f,x,y,m)

raw_input(’’\nPress return to exit’’

Running the preceding program produced the following result:

Integration order ==> 3

Integral = 11.3777777778

Quadrature over a Triangular Element

A triangle may be viewed as a degenerate quadrilateral with two of its corners occu-
pying the same location, as illustrated in Fig. 6.8. Therefore, the integration formulas
over a quadrilateral region can also be used for a triangular element. However, it is
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1
2

3 4

Figure 6.8. Degenerate quadrilateral.

computationally advantageous to use integration formulas specially developed for
triangles, which we present without derivation.6

P
A

A

A 12

1
23

3

x

y

Figure 6.9. Triangular element.

Consider the triangular element in Fig. 6.9. Drawing straight lines from the point
P in the triangle to each of the corners, we divide the triangle into three parts with
areas A 1, A 2, and A 3. The area coordinates of P are defined as

αi = Ai

A
, i = 1, 2, 3 (6.47)

where A is the area of the element. Because A 1 + A 2 + A 3 = A , the area coordinates
are related by

α1 + α2 + α3 = 1 (6.48)

Note that αi ranges from 0 (when P lies on the side opposite to corner i) to 1 (when P
is at corner i).

A convenient formula for computing A from the corner coordinates (xi , yi ) is

A = 1
2

∣∣∣∣∣∣∣
1 1 1
x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣∣ (6.49)

The area coordinates are mapped into the Cartesian coordinates by

x(α1, α2, α3) =
3∑

i=1

αi xi y(α1, α2, α3) =
3∑

i=1

αi yi (6.50)

6 The triangle formulas are extensively used in finite method analysis. See, for example, O. C.
Zienkiewicz and R. L. Taylor, The Finite Element Method, Vol. 1, 4th ed. (McGraw-Hill, 1989).
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a
a

b

c
b

c d
a

(a) Linear (b) Quadratic (c) Cubic
Figure 6.10. Integration points of triangular elements.

The integration formula over the element is∫ ∫
A

f [x(α), y(α)] dA = A
∑

k

Wk f [x(αk ), y(αk )] (6.51)

where αk represents the area coordinates of the integration point k, and Wk are the
weights. The locations of the integration points are shown in Figure 6.10, and the
corresponding values of αk and Wk are listed in Table 6.7. The quadrature in Eq. (6.51)
is exact if f (x, y) is a polynomial of the degree indicated.

Degree of f (x, y) Point αk Wk

(a) Linear a 1/3, 1/3, 1/3 1

(b) Quadratic a 1/2, 0 , 1/2 1/3
b 1/2, 1/2, 0 1/3
c 0, 1/2 , 1/2 1/3

(c) Cubic a 1/3, 1/3, 1/3 −27/48
b 1/5, 1/5, 3/5 25/48
c 3/5. 1/5 , 1/5 25/48
d 1/5, 3/5 , 1/5 25/48

Table 6.7

� triangleQuad

The function triangleQuad computes
∫ ∫

A f (x, y) dx dy over a triangular region us-
ing the cubic formula – case (c) in Fig. 6.10. The triangle is defined by its corner coor-
dinate arrays xc and yc, where the coordinates are listed in a counterclockwise order
around the triangle.

## module triangleQuad

’’’ integral = triangleQuad(f,xc,yc).

Integration of f(x,y) over a triangle using

the cubic formula.

{xc},{yc} are the corner coordinates of the triangle.

’’’

from numpy import array,dot
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237 ∗6.5 Multiple Integrals

def triangleQuad(f,xc,yc):

alpha = array([[1.0/3, 1.0/3.0, 1.0/3.0], \

[0.2, 0.2, 0.6], \

[0.6, 0.2, 0.2], \

[0.2, 0.6, 0.2]])

W = array([-27.0/48.0 ,25.0/48.0, 25.0/48.0, 25.0/48.0])

x = dot(alpha,xc)

y = dot(alpha,yc)

A = (xc[1]*yc[2] - xc[2]*yc[1] \

- xc[0]*yc[2] + xc[2]*yc[0] \

+ xc[0]*yc[1] - xc[1]*yc[0])/2.0

sum = 0.0

for i in range(4):

sum = sum + W[i] * f(x[i],y[i])

return A*sum

EXAMPLE 6.16

3

1

x

y1

3

2

Evaluate I = ∫ ∫A f (x, y) dx dy over the equilateral triangle shown, where7

f (x, y) = 1
2

(x2 + y2) − 1
6

(x3 − 3xy2) − 2
3

Use the quadrature formulas for (1) a quadrilateral and (2) a triangle.

Solution of Part (1) Let the triangle be formed by collapsing corners 3 and 4 of a
quadrilateral. The corner coordinates of this quadrilateral are x = [−1, −1, 2, 2]T

and y =
[√

3, − √
3, 0, 0

]T
. To determine the minimum required integration order

for an exact result, we must examine f [x(ξ , η), y(ξ , η)] |J (ξ , η)|, the integrand in Eqs.

7 This function is identical to the Prandtl stress function for torsion of a bar with the cross section
shown; the integral is related to the torsional stiffness of the bar. See, for example, S. P. Timoshenko
and J. N. Goodier, Theory of Elasticity, 3rd ed. (McGraw-Hill, 1970).
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238 Numerical Integration

(6.44). Because |J (ξ , η)| is biquadratic and f (x, y) is cubic in x, the integrand is a poly-
nomial of degree 5 in x. Therefore, third-order integration will suffice. The program
used for the computations is similar to the one in Example 6.15:

#!/usr/bin/python

## example6_16a

from gaussQuad2 import *

from numpy import array

from math import sqrt

def f(x,y):

return (x**2 + y**2)/2.0 \

- (x**3 - 3.0*x*y**2)/6.0 \

- 2.0/3.0

x = array([-1.0,-1.0,2.0,2.0])

y = array([sqrt(3.0),-sqrt(3.0),0.0,0.0])

m = eval(raw_input(’’Integration order ==> ’’))

print ’’Integral =’’, gaussQuad2(gaussNodes,f,x,y,m)

raw_input(’’\nPress return to exit’’)

Here is the output:

Integration order ==> 3

Integral = -1.55884572681

Solution of Part (2) The following program utilizes triangleQuad:

#!/usr/bin/python

# example6_16b

from numpy import array

from math import sqrt

from triangleQuad import *

def f(x,y):

return (x**2 + y**2)/2.0 \

- (x**3 - 3.0*x*y**2)/6.0 \

- 2.0/3.0

xCorner = array([-1.0, -1.0, 2.0])

yCorner = array([sqrt(3.0), -sqrt(3.0), 0.0])

print ’’Integral =’’,triangleQuad(f,xCorner,yCorner)

raw_input(’’Press return to exit’’)

Because the integrand is a cubic, this quadrature is also exact, the result being

Integral = -1.55884572681
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Note that only four function evaluations were required when using the triangle
formulas. In contrast, the function had to be evaluated at nine points in part (1).

EXAMPLE 6.17
The corner coordinates of a triangle are (0, 0), (16, 10), and (12, 20). Compute∫ ∫

A

(
x2 − y2

)
dx dy over this triangle.

12 4

10

10

a

b

c

x

y

Solution Because f (x, y) is quadratic, quadrature over the three integration points
shown in Fig. 6.10(b) will be sufficient for an “exact” result. The integration points lie
in the middle of each side; their coordinates are (6, 10), (8, 5), and (14, 15). The area
of the triangle is obtained from Eq. (6.49):

A = 1
2

∣∣∣∣∣∣∣
1 1 1
x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣∣ =
1
2

∣∣∣∣∣∣∣
1 1 1
0 16 12
0 10 20

∣∣∣∣∣∣∣ = 100

From Eq. (6.51) we get

I = A
c∑

k=a

Wk f (xk , yk )

= 100
[

1
3

f (6, 10) + 1
3

f (8, 5) + 1
3

f (14, 15)
]

= 100
3

[
(62 − 102) + (82 − 52) + (142 − 152)

] = 1800

PROBLEM SET 6.3

1. Use Gauss–Legendre quadrature to compute∫ 1

−1

∫ 1

−1
(1 − x2)(1 − y2) dx dy

2. Evaluate the following integral with Gauss–Legendre quadrature:∫ 2

y=0

∫ 3

x=0
x2y2 dx dy
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240 Numerical Integration

3. Compute the approximate value of∫ 1

−1

∫ 1

−1
e−(x2+y2) dx dy

with Gauss–Legendre quadrature. Use integration order (a) 2 and (b) 3. (The “ex-
act” value of the integral is 2.230 985.)

4. Use third-order Gauss–Legendre quadrature to obtain an approximate value of∫ 1

−1

∫ 1

−1
cos

π(x − y)
2

dx dy

(The “exact” value of the integral is 1.621 139.)
5. Map the integral

∫ ∫
A xy dx dy from the quadrilateral region shown to the “stan-

dard” rectangle, and then evaluate it analytically.

4

4

2
x

y

6. Compute
∫ ∫

A x dx dy over the quadrilateral region shown by first mapping it
into the “standard” rectangle and then integrating analytically.

4

4

32 x

y

7. Use quadrature to compute
∫ ∫

A x2 dx dy over the triangle shown.

4

2

3 x

y
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8. Evaluate
∫ ∫

A x3 dx dy over the triangle shown in Prob. 7.
9. Use quadrature to evaluate

∫ ∫
A (3 − x)y dx dy over the region shown. Treat the

region as (a) a triangular element and (b) a degenerate quadrilateral.

4

x

y

3

10. Evaluate
∫ ∫

A x2y dx dy over the triangle shown in Prob. 9.
11. �

1 3

x

y

2

13

2

Evaluate
∫ ∫

A xy(2 − x2)(2 − xy) dx dy over the region shown.
12. � Compute

∫ ∫
A xy exp(−x2) dx dy over the region shown in Prob. 11 to four dec-

imal places.
13. �

1

1

x

y

Evaluate
∫ ∫

A (1 − x)(y − x)y dx dy over the triangle shown.
14. � Estimate

∫ ∫
A sin πx dx dy over the region shown in Prob. 13. Use the cubic

integration formula for a triangle. (The exact integral is 1/π .)
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15. � Compute
∫ ∫

A sin πx sin π(y − x) dx dy to six decimal places, where A is the tri-
angular region shown in Prob. 13. Consider the triangle as a degenerate quadri-
lateral.

16. �

1

1

1

1

y

x

Write a program to evaluate
∫ ∫

A f (x, y) dx dy over an irregular region that has
been divided into several triangular elements. Use the program to compute∫ ∫

A xy(y − x) dx dy over the region shown.
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