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4 Roots of Equations

Find the solutions of f (x) = 0, where the function f is given

4.1 Introduction

A common problem encountered in engineering analysis is this: given a function
f (x), determine the values of x for which f (x) = 0. The solutions (values of x) are
known as the roots of the equation f (x) = 0, or the zeroes of the function f (x).

Before proceeding further, it might be helpful to review the concept of a function.
The equation

y = f (x)

contains three elements: an input value x, an output value y , and the rule f for com-
puting y . The function is said to be given if the rule f is specified. In numerical com-
puting the rule is invariably a computer algorithm. It may be a function statement,
such as

f (x) = cosh(x) cos(x) − 1

or a complex procedure containing hundreds or thousands of lines of code. As long
as the algorithm produces an output y for each input x, it qualifies as a function.

The roots of equations may be real or complex. The complex roots are seldom
computed, because they rarely have physical significance. An exception is the poly-
nomial equation

a0 + a1x + a1x2 + . . . + anxn = 0

where the complex roots may be meaningful (as in the analysis of damped vibra-
tions, for example). For the time being, we concentrate on finding the real roots of
equations. Complex zeroes of polynomials are treated near the end of this chapter.

In general, an equation may have any number of (real) roots, or no roots at all.
For example,

sin x − x = 0
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140 Roots of Equations

has a single root, namely, x = 0, whereas

tan x − x = 0

has an infinite number of roots (x = 0, ±4.493, ±7.725, . . .).
All methods of finding roots are iterative procedures that require a starting point,

that is, an estimate of the root. This estimate can be crucial; a bad starting value may
fail to converge, or it may converge to the “wrong” root (a root different from the one
sought). There is no universal recipe for estimating the value of a root. If the equa-
tion is associated with a physical problem, then the context of the problem (physical
insight) might suggest the approximate location of the root. Otherwise, a systematic
numerical search for the roots can be carried out. One such search method is de-
scribed in the next section. Plotting the function is another means of locating the
roots, but it is a visual procedure that cannot be programmed.

It is highly advisable to go a step further and bracket the root (determine its lower
and upper bounds) before passing the problem to a root-finding algorithm. Prior
bracketing is, in fact, mandatory in the methods described in this chapter.

4.2 Incremental Search Method

The approximate locations of the roots are best determined by plotting the function.
Often a very rough plot, based on a few points, is sufficient to give us reasonable start-
ing values. Another useful tool for detecting and bracketing roots is the incremental
search method. It can also be adapted for computing roots, but the effort would not
be worthwhile, because other methods described in this chapter are more efficient
for that.

The basic idea behind the incremental search method is simple: If f (x1) and f (x2)
have opposite signs, then there is at least one root in the interval (x1, x2). If the inter-
val is small enough, it is likely to contain a single root. Thus, the zeroes of f (x) can be
detected by evaluating the function at intervals �x and looking for change in sign.

There are a couple of potential problems with the incremental search method:

• It is possible to miss two closely spaced roots if the search increment �x is larger
than the spacing of the roots.

• A double root (two roots that coincide) will not be detected.
• Certain singularities (poles) of f (x) can be mistaken for roots. For example,

f (x) = tan x changes sign at x = ± 1
2nπ , n = 1, 3, 5, . . ., as shown in Fig. 4.1. How-

ever, these locations are not true zeroes, since the function does not cross the
x-axis.

� rootsearch

This function searches for a zero of the user-supplied function f(x) in the interval
(a,b) in increments of dx. It returns the bounds (x1,x2)of the root if the search
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141 4.2 Incremental Search Method
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Figure 4.1. Plot of tan x.

was successful; x1 = x2 = None indicates that no roots were detected. After the first
root (the root closest to a) has been detected, rootsearch can be called again with
a replaced by x2 in order to find the next root. This can be repeated as long as root-
search detects a root.

## module rootsearch

’’’ x1,x2 = rootsearch(f,a,b,dx).

Searches the interval (a,b) in increments dx for

the bounds (x1,x2) of the smallest root of f(x).

Returns x1 = x2 = None if no roots were detected.

’’’

def rootsearch(f,a,b,dx):

x1 = a; f1 = f(a)

x2 = a + dx; f2 = f(x2)

while f1*f2 > 0.0:

if x1 >= b: return None,None

x1 = x2; f1 = f2

x2 = x1 + dx; f2 = f(x2)

else:

return x1,x2

EXAMPLE 4.1
Use incremental search with �x = 0.2 to bracket the smallest positive zero of f (x) =
x3 − 10x2 + 5.
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142 Roots of Equations

Solution We evaluate f (x) at intervals �x = 0.2, staring at x = 0, until the function
changes its sign (the value of the function is of no interest to us, only its sign is rele-
vant). This procedure yields the following results:

x f (x)

0.0 5.000

0.2 4.608

0.4 3.464

0.6 1.616

0.8 −0.888

From the sign change of the function, we conclude that the smallest positive zero lies
between x = 0.6 and x = 0.8.

4.3 Method of Bisection

After a root of f (x) = 0 has been bracketed in the interval (x1, x2), several methods
can be used to close in on it. The method of bisection accomplishes this by succes-
sively halving the interval until it becomes sufficiently small. This technique is also
known as the interval halving method. Bisection is not the fastest method available
for computing roots, but it is the most reliable. Once a root has been bracketed, bi-
section will always close in on it.

The method of bisection uses the same principle as incremental search: If there
is a root in the interval (x1, x2), then f (x1) · f (x2) < 0. In order to halve the interval, we
compute f (x3), where x3 = 1

2 (x1 + x2) is the midpoint of the interval. If f (x2) · f (x3) <

0, then the root must be in (x2, x3), and we record this by replacing the original
bound x1 by x3. Otherwise, the root lies in (x1, x3), in which case x2 is replaced by
x3. In either case, the new interval (x1, x2) is half the size of the original interval.
The bisection is repeated until the interval has been reduced to a small value ε,
so that

|x2 − x1| ≤ ε

It is easy to compute the number of bisections required to reach a prescribed ε.

The original interval �x is reduced to �x/2 after one bisection, to �x/22 after two
bisections, and after n bisections it is �x/2n. Setting �x/2n = ε and solving for n,
we get

n = ln (|�x| /ε)
ln 2

(4.1)

� bisection

This function uses the method of bisection to compute the root of f(x) = 0 that is
known to lie in the interval (x1,x2). The number of bisections n required to reduce

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:37 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.006

Cambridge Books Online © Cambridge University Press, 2016



143 4.3 Method of Bisection

the interval to tol is computed from Eq. (4.1). By setting switch = 1, we force the
routine to check whether the magnitude of f(x) decreases with each interval halv-
ing. If it does not, something may be wrong (probably the “root” is not a root at all,
but a pole) and root = None is returned. Because this feature is not always desir-
able, the default value is switch = 0. The function error.err, which we use to
terminate a program, is listed in Section 1.7.

## module bisection

’’’ root = bisection(f,x1,x2,switch=0,tol=1.0e-9).

Finds a root of f(x) = 0 by bisection.

The root must be bracketed in (x1,x2).

Setting switch = 1 returns root = None if

f(x) increases upon bisection.

’’’

from math import log,ceil

import error

def bisection(f,x1,x2,switch=1,tol=1.0e-9):

f1 = f(x1)

if f1 == 0.0: return x1

f2 = f(x2)

if f2 == 0.0: return x2

if f1*f2 > 0.0: error.err(’Root is not bracketed’)

n = ceil(log(abs(x2 - x1)/tol)/log(2.0))

for i in range(n):

x3 = 0.5*(x1 + x2); f3 = f(x3)

if (switch == 1) and (abs(f3) > abs(f1)) \

and (abs(f3) > abs(f2)):

return None

if f3 == 0.0: return x3

if f2*f3 < 0.0: x1 = x3; f1 = f3

else: x2 = x3; f2 = f3

return (x1 + x2)/2.0

EXAMPLE 4.2
Use bisection to find the root of f (x) = x3 − 10x2 + 5 = 0 that lies in the interval
(0.6, 0.8).

Solution The best way to implement the method is to use the following table. Note
that the interval to be bisected is determined by the sign of f (x), not its magnitude.
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144 Roots of Equations

x f (x) Interval

0.6 1.616 −
0.8 −0.888 (0.6, 0.8)

(0.6 + 0.8)/2 = 0.7 0.443 (0.7, 0.8)

(0.8 + 0.7)/2 = 0.75 −0. 203 (0.7, 0.75)

(0.7 + 0.75)/2 = 0.725 0.125 (0.725, 0.75)

(0.75 + 0.725)/2 = 0.7375 −0.038 (0.725, 0.7375)

(0.725 + 0.7375)/2 = 0.73125 0.044 (0.7375, 0.73125)

(0.7375 + 0.73125)/2 = 0.73438 0.003 (0.7375, 0.73438)

(0.7375 + 0.73438)/2 = 0.73594 −0.017 (0.73438, 0.73594)

(0.73438 + 0.73594)/2 = 0.73516 −0.007 (0.73438, 0.73516)

(0.73438 + 0.73516)/2 = 0.73477 −0.002 (0.73438, 0.73477)

(0.73438 + 0.73477)/2 = 0.73458 0.000 −
The final result x = 0.7346 is correct within four decimal places.

EXAMPLE 4.3
Find all the zeroes of f (x) = x − tan x in the interval (0, 20) by the method of bisec-
tion. Utilize the functions rootsearch and bisection.

Solution Note that tan x is singular and changes sign at x = π/2, 3π/2, . . .. To
prevent bisection from mistaking these point for roots, we set switch = 1. The
closeness of roots to the singularities is another potential problem that can be
alleviated by using small �x in rootsearch. Choosing �x = 0.01, we arrive at the
following program:

#!/usr/bin/python

## example4_3

from math import tan

from rootsearch import *

from bisection import *

def f(x): return x - tan(x)

a,b,dx = (0.0, 20.0, 0.01)

print "The roots are:"

while 1:

x1,x2 = rootsearch(f,a,b,dx)

if x1 != None:

a = x2

root = bisection(f,x1,x2,1)

if root != None: print root

else:

print "\nDone"

break

raw_input("Press return to exit")
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145 4.4 Methods Based on Linear Interpolation

The output from the program is:

The roots are:

0.0

4.4934094581

7.72525183707

10.9041216597

14.0661939129

17.2207552722

Done

4.4 Methods Based on Linear Interpolation

Secant and False Position Methods

The secant and the false position methods are closely related. Both methods require
two starting estimates of the root, say, x1 and x2. The function f (x) is assumed to be
approximately linear near the root, so that the improved value x3 of the root can be
estimated by linear interpolation between x1 and x2.
Referring to Fig. 4.2, we obtain from similar triangles (shaded in the figure)

f2

x3 − x2
= f1 − f2

x2 − x1

where we used the notation fi = f (xi ). This yields for the improved estimate of the
root

x3 = x2 − f2
x2 − x1

f2 − f1
(4.2)

The false position method (also known as regula falsi) requires x1 and x2 to
bracket the root. After the improved root is computed from Eq. (4.2), either x1 or x2

is replaced by x3. If f3 has the same sign as f1, we let x1 ← x3; otherwise, we choose
x2 ← x3. In this manner, the root is always bracketed in (x1, x2). The procedure is then
repeated until convergence is obtained.

f(x)

xx x x1 2

Linear
approximation

3

2f

1f

Figure 4.2. Linear interpolation.
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146 Roots of Equations

f(x)
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x3 x1

x2
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x

g(x)

(b)(a)
h h h h

4x

Figure 4.3. Mapping used in Ridder’s method.

The secant method differs from the false-position method in two details: (1) It
does not require prior bracketing of the root; and (2) the oldest prior estimate of the
root is discarded, that is, after x3 is computed, we let x1 ← x2, x2 ← x3.

The convergence of the secant method can be shown to be superlinear, the error
behaving as Ek+1 = cE 1.618...

k (the exponent 1.618... is the “golden ratio”). The precise
order of convergence for the false position method is impossible to calculate. Gener-
ally, it is somewhat better than linear, but not by much. However, because the false
position method always brackets the root, it is more reliable. We will not delve fur-
ther into these methods, because both of them are inferior to Ridder’s method as far
as the order of convergence is concerned.

Ridder’s Method

Ridder’s method is a clever modification of the false position method. Assuming that
the root is bracketed in (x1, x2), we first compute f3 = f (x3), where x3 is the midpoint
of the bracket, as indicated in Fig. 4.3(a). Next, we the introduce the function

g(x) = f (x)e(x−x1)Q (a)

where the constant Q is determined by requiring the points (x1, g1), (x2, g2), and

(x3, g3) to lie on a straight line, as shown in Fig. 4.3(b). As before, the notation we
use is gi = g(xi ). The improved value of the root is then obtained by linear interpola-
tion of g(x) rather than f (x).

Let us now look at the details. From Eq. (a) we obtain

g1 = f1 g2 = f2e2hQ g3 = f3ehQ (b)

where h = (x2 − x1)/2. The requirement that the three points in Fig. 4.3b lie on a
straight line is g3 = (g1 + g2)/2, or

f3ehQ = 1
2

(f1 + f2e2hQ)

which is a quadratic equation in ehQ. The solution is

ehQ =
f3 ±

√
f 2
3 − f1 f2

f2
(c)
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147 4.4 Methods Based on Linear Interpolation

Linear interpolation based on points (x1, g1) and (x3, g3) now yields for the im-
proved root

x4 = x3 − g3
x3 − x1

g3 − g1
= x3 − f3ehQ x3 − x1

f3ehQ − f1

where in the last step we utilized Eqs. (b). As the final step, we substitute for ehQ from
Eq. (c) and obtain after some algebra

x4 = x3 ± (x3 − x1)
f3√

f 2
3 − f1 f2

(4.3)

It can be shown that the correct result is obtained by choosing the plus sign if f1 −
f2 > 0, and the minus sign if f1 − f2 < 0. After the computation of x4, new brackets
are determined for the root and Eq. (4.3) is applied again. The procedure is repeated
until the difference between two successive values of x4 becomes negligible.

Ridder’s iterative formula in Eq. (4.3) has a very useful property: if x1 and
x2 straddle the root, then x4 is always within the interval (x1, x2). In other words,
once the root is bracketed, it stays bracketed, making the method very reliable. The
downside is that each iteration requires two function evaluations. There are compet-
itive methods that get by with only one function evaluation per iteration (e.g., Brent’s
method), but they are more complex, with elaborate book-keeping.

Ridder’s method can be shown to converge quadratically, making it faster than
either the secant or the false position method. It is the method to use if the derivative
of f (x) is impossible or difficult to compute.

� ridder

The following is the source code for Ridder’s method:

## module ridder

’’’ root = ridder(f,a,b,tol=1.0e-9).

Finds a root of f(x) = 0 with Ridder’s method.

The root must be bracketed in (a,b).

’’’

import error

from math import sqrt

def ridder(f,a,b,tol=1.0e-9):

fa = f(a)

if fa == 0.0: return a

fb = f(b)

if fb == 0.0: return b

if fa*fb > 0.0: error.err(’Root is not bracketed’)

for i in range(30):

# Compute the improved root x from Ridder’s formula

c = 0.5*(a + b); fc = f(c)

s = sqrt(fc**2 - fa*fb)
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148 Roots of Equations

if s == 0.0: return None

dx = (c - a)*fc/s

if (fa - fb) < 0.0: dx = -dx

x = c + dx; fx = f(x)

# Test for convergence

if i > 0:

if abs(x - xOld) < tol*max(abs(x),1.0): return x

xOld = x

# Re-bracket the root as tightly as possible

if fc*fx > 0.0:

if fa*fx < 0.0: b = x; fb = fx

else: a = x; fa = fx

else:

a = c; b = x; fa = fc; fb = fx

return None

print ’Too many iterations’

EXAMPLE 4.4
Determine the root of f (x) = x3 − 10x2 + 5 = 0 that lies in (0.6, 0.8) with Ridder’s
method.

Solution The starting points are

x1 = 0.6 f1 = 0.63 − 10(0.6)2 + 5 = 1.6160

x2 = 0.8 f2 = 0.83 − 10(0.8)2 + 5 = −0.8880

First iteration
Bisection yields the point

x3 = 0.7 f3 = 0.73 − 10(0.7)2 + 5 = 0.4430

The improved estimate of the root can now be computed with Ridder’s formula:

s =
√

f 2
3 − f1 f2 =

√
0.43302 − 1.6160(−0.8880) = 1.2738

x4 = x3 ± (x3 − x1)
f3

s

Because f1 > f2, we must use the plus sign. Therefore,

x4 = 0.7 + (0.7 − 0.6)
0.4430
1.2738

= 0.7348

f4 = 0.73483 − 10(0.7348)2 + 5 = −0.0026

As the root clearly lies in the interval (x3, x4), we let

x1 ← x3 = 0.7 f1 ← f3 = 0.4430

x2 ← x4 = 0.7348 f2 ← f4 = −0.0026

which are the starting points for the next iteration.
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149 4.4 Methods Based on Linear Interpolation

Second iteration

x3 = 0.5(x1 + x2) = 0.5(0.7 + 0.7348) = 0.717 4

f3 = 0.717 43 − 10(0.717 4)2 + 5 = 0.2226

s =
√

f 2
3 − f1 f2 =

√
0.22262 − 0.4430(−0.0026) = 0.2252

x4 = x3 ± (x3 − x1)
f3

s

Because f1 > f2, we again use the plus sign, so that

x4 = 0.717 4 + (0.717 4 − 0.7)
0.2226
0.2252

= 0.7346

f4 = 0.73463 − 10(0.7346)2 + 5 = 0.0000

Thus the root is x = 0.7346, accurate to at least four decimal places.

EXAMPLE 4.5
Compute the zero of the function

f (x) = 1
(x − 0.3)2 + 0.01

− 1
(x − 0.8)2 + 0.04

Solution We obtain the approximate location of the root by plotting the function.
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150 Roots of Equations

It is evident that the root of f (x) = 0 lies between x = 0.5 and 0.7. We can extract
this root with the following program:

#!/usr/bin/python

## example4_5

from math import cos

from ridder import *

def f(x):

a = (x - 0.3)**2 + 0.01

b = (x - 0.8)**2 + 0.04

return 1.0/a - 1.0/b

print "root =",ridder(f,0.5,0.7)

raw_input("Press return to exit")

The result is

root = 0.58

4.5 Newton–Raphson Method

The Newton–Raphson algorithm is the best-known method of finding roots for a
good reason: it is simple and fast. The only drawback of the method is that it uses
the derivative f ′(x)of the function as well as the function f (x) itself. Therefore, the
Newton–Raphson method is usable only in problems where f ′(x) can be readily
computed.

The Newton–Raphson formula can be derived from the Taylor series expansion
of f (x) about x:

f (xi+1) = f (xi ) + f ′(xi )(xi+1 − xi ) + O(xi+1 − xi )2 (a)

where O(z) is to be read as “of the order of z” – see Appendix A1. If xi+1 is a root of
f (x) = 0, Eq. (a) becomes

0 = f (xi ) + f ′(xi ) (xi+1 − xi ) + O(xi+1 − xi )2 (b)

Assuming that xi is close to xi+1, we can drop the last term in Eq. (b) and solve for
xi+1. The result is the Newton–Raphson formula

xi+1 = xi − f (x)
f ′(x)

(4.3)

Letting x denote the true value of the root, the error in xi is Ei = x − xi . It can be
shown that if xi+1 is computed from Eq. (4.3), the corresponding error is

Ei+1 = − f ′′(x)
2f ′(x)

E 2
i
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151 4.5 Newton–Raphson Method

Tangent line

f(xi)

i ixx +1
x

f(x)

Figure 4.4. Graphical interpretation of Newon–Raphson formula.

indicating that the Newton–Raphson method converges quadratically (the error is
the square of the error in the previous step). As a consequence, the number of sig-
nificant figures is roughly doubled in every iteration, provided that xi is close to the
root.

A graphical depiction of the Newton–Raphson formula is shown in Fig. 4.4. The
formula approximates f (x) by the straight line that is tangent to the curve at xi . Thus,
xi+1 is at the intersection of the x-axis and the tangent line.

The algorithm for the Newton–Raphson method is simple: it repeatedly applies
Eq. (4.3), starting with an initial value x0, until the convergence criterion

|xi+1 − xi | < ε

is reached, ε being the error tolerance. Only the latest value of x has to be stored. Here
is the algorithm:

1. Let x be a guess for the root of f (x) = 0.
2. Compute �x = −f (x)/f ′(x).
3. Let x ← x + �x and repeat steps 2–3 until |�x| < ε.

Although the Newton–Raphson method converges fast near the root, its global
convergence characteristics are poor. The reason is that the tangent line is not always
an acceptable approximation of the function, as illustrated in the two examples in
Fig. 4.5. But the method can be made nearly fail-safe by combining it with bisection.

x x

f(x)

0

xxx
x

f(x)

0 21

(a) (b)
Figure 4.5. Examples where the Newton–Raphson method diverges.
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152 Roots of Equations

� newtonRaphson

The following safe version of the Newton–Raphson method assumes that the root to
be computed is initially bracketed in (a,b). The midpoint of the bracket is used
as the initial guess of the root. The brackets are updated after each iteration. If a
Newton–Raphson iteration does not stay within the brackets, it is disregarded and
replaced with bisection. Because newtonRaphson uses the function f(x) as well as
its derivative, function routines for both (denoted by f and df in the listing) must be
provided by the user.

## module newtonRaphson

’’’ root = newtonRaphson(f,df,a,b,tol=1.0e-9).

Finds a root of f(x) = 0 by combining the Newton--Raphson

method with bisection. The root must be bracketed in (a,b).

Calls user-supplied functions f(x) and its derivative df(x).

’’’

def newtonRaphson(f,df,a,b,tol=1.0e-9):

import error

fa = f(a)

if fa == 0.0: return a

fb = f(b)

if fb == 0.0: return b

if fa*fb > 0.0: error.err(’Root is not bracketed’)

x = 0.5*(a + b)

for i in range(30):

fx = f(x)

if abs(fx) < tol: return x

# Tighten the brackets on the root

if fa*fx < 0.0:

b = x

else:

a = x

# Try a Newton-Raphson step

dfx = df(x)

# If division by zero, push x out of bounds

try: dx = -fx/dfx

except ZeroDivisionError: dx = b - a

x = x + dx

# If the result is outside the brackets, use bisection

if (b - x)*(x - a) < 0.0:

dx = 0.5*(b-a)

x = a + dx

# Check for convergence

if abs(dx) < tol*max(abs(b),1.0): return x

print ’Too many iterations in Newton-Raphson’
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153 4.5 Newton–Raphson Method

EXAMPLE 4.6
A root of f (x) = x3 − 10x2 + 5 = 0 lies close to x = 7. Compute this root with the
Newton–Raphson method.

Solution The derivative of the function is f ′(x) = 3x2 − 20x, so that the Newton–
Raphson formula in Eq. (4.3) is

x ← x − f (x)
f ′(x)

= x − x3 − 10x2 + 5
3x2 − 20x

= 2x3 − 10x2 − 5
x (3x − 20)

It takes only two iterations to reach five-decimal-place accuracy:

x ← 2(0.7)3 − 10(0.7)2 − 5
0.7 [3(0.7) − 20]

= 0.735 36

x ← 2(0.735 36)3 − 10(0.735 36)2 − 5
0.735 36 [3(0.735 36) − 20]

= 0.734 60

EXAMPLE 4.6
Use the Newton–Raphson method to obtain successive approximations of

√
2 as the

ratio of two integers.

Solution The problem is equivalent to finding the root of f (x) = x2 − 2 = 0. Here the
Newton–Raphson formula is

x ← x − f (x)
f ′ (x)

= x − x2 − 2
2x

= x2 + 2
2x

Starting with x = 1, successive iterations yield

x ← (1)2 + 2
2(1)

= 3
2

x ← (3/2)2 + 2
2(3/2)

= 17
12

x ← (17/12)2 + 2
2(17/12)

= 577
408

...

Note that x = 577/408 = 1.1414216 is already very close to
√

2 = 1.1414214.

The results are dependent on the starting value of x. For example, x = 2 would
produce a different sequence of ratios.

EXAMPLE 4.7
Find the smallest positive zero of

f (x) = x4 − 6.4x3 + 6.45x2 + 20.538x − 31.752

Solution Inspecting the plot of the function, we suspect that the smallest positive
zero is a double root at about x = 2. Bisection and Ridder’s method would not work
here, because they depend on the function changing its sign at the root. The same
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x
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f(
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-40
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60

argument applies to the function newtonRaphson. But there is no reason why the
unrefined version of the Newton–Raphson method should not succeed. We used the
following program, which prints the number of iterations in addition to the root:

#!/usr/bin/python

## example4_7

def f(x): return x**4 - 6.4*x**3 + 6.45*x**2 + 20.538*x - 31.752

def df(x): return 4.0*x**3 - 19.2*x**2 + 12.9*x + 20.538

def newtonRaphson(x,tol=1.0e-9):

for i in range(30):

dx = -f(x)/df(x)

x = x + dx

if abs(dx) < tol: return x,i

print ’Too many iterations\n’

root,numIter = newtonRaphson(2.0)

print ’Root =’,root

print ’Number of iterations =’,numIter

raw_input(’’Press return to exit’’)

The output is

Root = 2.09999998403

Number of iterations = 23

The true value of the root is x = 2.1. It can be shown that near a multiple root,
the convergence of the Newton–Raphson method is linear rather than quadratic,
which explains the large number of iterations. Convergence to a multiple root can
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155 4.6 Systems of Equations

be speeded up by replacing the Newton–Raphson formula in Eq. (4.3) with

xi+1 = xi − m
f (x)
f ′(x)

where m is the multiplicity of the root (m = 2 in this problem). After making the
change in the above program, we obtained the result in only five iterations.

4.6 Systems of Equations

Introduction

Up to this point, we have confined our attention to solving the single equation f (x) =
0. Let us now consider the n-dimensional version of the same problem, namely

f(x) = 0

or, using scalar notation,

f1(x1, x2, . . . , xn) = 0

f2(x1, x2, . . . , xn) = 0 (4.4)

...

fn(x1, x2, . . . , xn) = 0

The solution of n simultaneous, nonlinear equations is a much more formidable task
than finding the root of a single equation. The trouble is the lack of a reliable method
for bracketing the solution vector x. Therefore, we cannot always provide the solution
algorithm with a good starting value of x, unless such a value is suggested by the
physics of the problem.

The simplest, and the most effective means of computing x is the Newton–
Raphson method. It works well with simultaneous equations, provided that it is sup-
plied with a good starting point. There are other methods that have better global
convergence characteristics, but all of them are variants of the Newton–Raphson
method.

Newton–Raphson Method

In order to derive the Newton–Raphson method for a system of equations, we start
with the Taylor series expansion of fi (x) about the point x:

fi (x + �x) = fi (x) +
n∑

j=1

∂fi
∂xj

�xj + O(�x2) (4.5a)

Dropping terms of order �x2, we can write Eq. (4.5a) as

f(x + �x) = f(x) + J(x) �x (4.5b)
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156 Roots of Equations

where J(x) is the Jacobian matrix (of size n × n) made up of the partial derivatives

Jij = ∂fi
∂xj

(4.6)

Note that Eq. (4.5b) is a linear approximation (vector �x being the variable) of the
vector-valued function f in the vicinity of point x.

Let us now assume that x is the current approximation of the solution of
f(x) = 0, and let x + �x be the improved solution. To find the correction �x, we set
f(x + �x) = 0 in Eq. (4.5b). The result is a set of linear equations for �x :

J(x)�x = −f(x) (4.7)

The following steps constitute the Newton–Raphson method for simultaneous,
nonlinear equations:

1. Estimate the solution vector x.
2. Evaluate f(x).
3. Compute the Jacobian matrix J(x) from Eq. (4.6).
4. Set up the simultaneous equations in Eq. (4.7) and solve for �x.
5. Let x ← x + �x and repeat steps 2–5.

The foregoing process is continued until |�x| < ε, where ε is the error tolerance.
As in the one-dimensional case, the success of the Newton–Raphson procedure de-
pends entirely on the initial estimate of x. If a good starting point is used, conver-
gence to the solution is very rapid. Otherwise, the results are unpredictable.

Because analytical derivation of each ∂fi/∂xj can be difficult or impractical, it is
preferable to let the computer calculate the partial derivatives from the finite differ-
ence approximation

∂fi
∂xj

≈ fi (x + e j h) − fi (x)
h

(4.8)

where h is a small increment of applied to xj and e j represents a unit vector in the
direction of xj . This formula can be obtained from Eq. (4.5a) after dropping the terms
of order �x2 and setting �x = e j h. We get away with the approximation in Eq. (4.8)
because the Newton–Raphson method is rather insensitive to errors in J(x). By using
this approximation, we also avoid the tedium of typing the expressions for ∂fi/∂xj

into the computer code.

� newtonRaphson2

This function is an implementation of the Newton–Raphson method. The nested
function jacobian computes the Jacobian matrix from the finite difference ap-
proximation in Eq. (4.8). The simultaneous equations in Eq. (4.7) are solved by
Gauss elimination with row pivoting using the function gaussPivot listed in Sec-
tion 2.5. The function subroutine f that returns the array f(x) must be supplied by
the user.
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157 4.6 Systems of Equations

## module newtonRaphson2

’’’ soln = newtonRaphson2(f,x,tol=1.0e-9).

Solves the simultaneous equations f(x) = 0 by

the Newton-Raphson method using {x} as the initial

guess. Note that {f} and {x} are vectors.

’’’

from numpy import zeros,dot

from gaussPivot import *

from math import sqrt

def newtonRaphson2(f,x,tol=1.0e-9):

def jacobian(f,x):

h = 1.0e-4

n = len(x)

jac = zeros((n,n))

f0 = f(x)

for i in range(n):

temp = x[i]

x[i] = temp + h

f1 = f(x)

x[i] = temp

jac[:,i] = (f1 - f0)/h

return jac,f0

for i in range(30):

jac,f0 = jacobian(f,x)

if sqrt(dot(f0,f0)/len(x)) < tol: return x

dx = gaussPivot(jac,-f0)

x = x + dx

if sqrt(dot(dx,dx)) < tol*max(max(abs(x)),1.0): return x

print ’Too many iterations’

Note that the Jacobian matrix J(x) is recomputed in each iterative loop. Because
each calculation of J(x) involves n + 1 evaluations of f(x) (n is the number of equa-
tions), the expense of computation can be high depending on n and the complexity
of f(x). It is often possible to save computer time by neglecting the changes in the
Jacobian matrix between iterations, thus computing J(x) only once. This will work
provided that the initial x is sufficiently close to the solution.

EXAMPLE 4.8
Determine the points of intersection between the circle x2 + y2 = 3 and the hyper-
bola xy = 1.
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158 Roots of Equations

Solution The equations to be solved are

f1(x, y) = x2 + y2 − 3 = 0 (a)

f2(x, y) = xy − 1 = 0 (b)

The Jacobian matrix is

J(x, y) =
[
∂f1/∂x ∂f1/∂y
∂f2/∂x ∂f2/∂y

]
=
[

2x 2y
y x

]

Thus, the linear equations J(x)�x = −f(x) associated with the Newton–Raphson
method are [

2x 2y
y x

][
�x
�y

]
=
[

−x2 − y2 + 3
−xy + 1

]
(c)

By plotting the circle and the hyperbola, we see that there are four points of in-
tersection. It is sufficient, however, to find only one of these points, as the others can
be deduced from symmetry. From the plot, we also get rough estimate of the coordi-
nates of an intersection point: x = 0.5, y = 1.5, which we use as the starting values.

x

y

3

1 2

1

2

-1-2

-1

-2

The computations then proceed as follows.

First iteration
Substituting x = 0.5, y = 1.5 in Eq. (c), we get[

1.0 3.0
1.5 0.5

][
�x
�y

]
=
[

0.50
0.25

]

the solution of which is �x = �y = 0.125. Therefore, the improved coordinates of the
intersection point are

x = 0.5 + 0.125 = 0.625 y = 1.5 + 0.125 = 1.625
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159 4.6 Systems of Equations

Second iteration
Repeating the procedure using the latest values of x and y , we obtain[

1.250 3.250
1.625 0.625

][
�x
�y

]
=
[

−0.031250
−0.015625

]

which yields �x = �y = −0.00694. Thus,

x = 0.625 − 0.006 94 = 0.618 06 y = 1.625 − 0.006 94 = 1.618 06

Third iteration
Substitution of the latest x and y into Eq. (c) yields[

1.236 12 3.23612
1.618 06 0.61806

][
�x
�y

]
=
[

−0.000 116
−0.000 058

]

The solution is �x = �y = −0.00003, so that

x = 0.618 06 − 0.000 03 = 0.618 03

y = 1.618 06 − 0.000 03 = 1.618 03

Subsequent iterations would not change the results within five significant fig-
ures. Therefore, the coordinates of the four intersection points are

±(0.618 03, 1.618 03) and ± (1.618 03, 0.618 03)

Alternate solution
If there are only a few equations, it may be possible to eliminate all but one of the
unknowns. Then we would be left with a single equation which can be solved by the
methods described in Sections 4.2–4.5. In this problem, we obtain from Eq. (b)

y = 1
x

which, upon substitution into Eq. (a), yields x2 + 1/x2 − 3 = 0, or

x4 − 3x2 + 1 = 0

The solutions of this biquadratic equation; x = ±0.618 03 and ±1.618 03, agree with
the results obtained by the Newton–Raphson method.

EXAMPLE 4.9
Find a solution of

sin x + y2 + ln z − 7 = 0

3x + 2y − z3 + 1 = 0

x + y + z − 5 = 0

using newtonRaphson2. Start with the point (1, 1, 1).
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160 Roots of Equations

Solution Letting x1 = x, x2 = y and x3 = z, we obtain the following program:

#!/usr/bin/python

## example4_9

from numpy import zeros,array

from math import sin,log

from newtonRaphson2 import *

def f(x):

f = zeros(len(x))

f[0] = sin(x[0]) + x[1]**2 + log(x[2]) - 7.0

f[1] = 3.0*x[0] + 2.0**x[1] - x[2]**3 + 1.0

f[2] = x[0] + x[1] + x[2] - 5.0

return f

x = array([1.0, 1.0, 1.0])

print newtonRaphson2(f,x)

raw_input ("\nPress return to exit")

The output from this program is

[ 0.59905376 2.3959314 2.00501484]

PROBLEM SET 4.1

1. Use the Newton–Raphson method and a four-function calculator (+ − ×÷ oper-
ations only) to compute 3

√
75 with four-significant-figure accuracy.

2. Find the smallest positive (real) root of x3 − 3.23x2 − 5.54x + 9.84 = 0 by the
method of bisection.

3. The smallest positive, nonzero root of cosh x cos x − 1 = 0 lies in the interval
(4, 5). Compute this root by Ridder’s method.

4. Solve Problem 3 by the Newton–Raphson method.
5. A root of the equation tan x − tanh x = 0 lies in (7.0, 7.4). Find this root with

three-decimal-place accuracy by the method of bisection.
6. Determine the two roots of sin x + 3 cos x − 2 = 0 that lie in the interval (−2, 2).

Use the Newton–Raphson method.
7. Solve Prob. 6 using the secant formula, Eq. (4.2).
8. Draw a plot of f (x) = cosh x cos x − 1 in the range 0 ≤ x ≤ 10. (a) Verify from the

plot that the smallest positive, nonzero root of f (x) = 0 lies in the interval (4, 5).
(b) Show graphically that the Newton–Raphson formula would not converge to
this root if it is started with x = 4.

9. The equation x3 − 1.2x2 − 8.19x + 13.23 = 0 has a double root close to x = 2.

Determine this root with the Newton–Raphson method within four decimal
places.

10. � Write a program that computes all the roots of f (x) = 0 in a given interval with
Ridder’s method. Utilize the functions rootsearch and ridder. You may use

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:37 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.006

Cambridge Books Online © Cambridge University Press, 2016



161 4.6 Systems of Equations

the program in Example 4.3 as a model. Test the program by finding the roots of
x sin x + 3 cos x − x = 0 in (−6, 6).

11. � Repeat Prob. 10 with the Newton–Raphson method.
12. � Determine all real roots of x4 + 0.9x3 − 2.3x2 + 3.6x − 25.2 = 0.
13. � Compute all positive real roots of x4 + 2x3 − 7x2 + 3 = 0.

14. � Find all positive, nonzero roots of sin x − 0.1x = 0.

15. � The natural frequencies of a uniform cantilever beam are related to the roots
βi of the frequency equation f (β) = cosh β cos β + 1 = 0,
where

β4
i = (2π fi )2 mL3

E I

fi = ith natural frequency (cps)

m = mass of the beam

L = length of the beam

E = modulus of elasticity

I = moment of inertia of the cross section

Determine the lowest two frequencies of a steel beam 0.9 m long, with a rectan-
gular cross section 25 mm wide and 2.5 mm high. The mass density of steel is
7850 kg/m3 and E = 200 GPa.

16. �
L
2

Length =s O

L
2

A steel cable of length s is suspended as shown in the figure. The maximum ten-
sile stress in the cable, which occurs at the supports, is

σ max = σ 0 cosh β

where

β = γ L
2σ 0

σ 0 = tensile stress in the cable at O

γ = weight of the cable per unit volume

L = horizontal span of the cable

The length to span ratio of the cable is related to β by

s
L

= 1
β

sinh β

Find σ max if γ = 77 × 103 N/m3 (steel), L = 1000 m, and s = 1100 m.
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17. �

P
ec

L

P

The aluminum W 310 × 202 (wide flange) column is subjected to an eccentric
axial load P as shown. The maximum compressive stress in the column is given
by the secant formula:

σ max = σ̄

[
1 + ec

r 2
sec

(
L
2r

√
σ̄

E

)]

where

σ̄ = P/A = average stress

A = 25, 800 mm2 = cross-sectional area of the column

e = 85 mm = eccentricity of the load

c = 170 mm = half-depth of the column

r = 142 mm = radius of gyration of the cross section

L = 7100 mm = length of the column

E = 71 × 109 Pa = modulus of elasticity

Determine the maximum load P that the column can carry if the maximum
stress is not to exceed 120 × 106 Pa.

18. �

hQ

H

ho

Bernoulli’s equation for fluid flow in an open channel with a small bump is

Q2

2gb2h2
0

+ h0 = Q2

2gb2h2
+ h + H
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163 4.6 Systems of Equations

where

Q = 1.2 m3/s = volume rate of flow

g = 9.81 m/s2 = gravitational acceleration

b = 1.8 m = width of channel

h0 = 0.6 m = upstream water level

H = 0.075 m = height of bump

h = water level above the bump

Determine h.
19. � The speed v of a Saturn V rocket in vertical flight near the surface of the earth

can be approximated by

v = u ln
M0

M0 − ṁt
− gt

where

u = 2510 m/s = velocity of exhaust relative to the rocket

M0 = 2.8 × 106 kg = mass of rocket at liftoff

ṁ = 13.3 × 103 kg/s = rate of fuel consumption

g = 9.81 m/s2 = gravitational acceleration

t = time measured from liftoff

Determine the time when the rocket reaches the speed of sound (335 m/s).
20. �

Isothermal
expansion

Volume reduced
by cooling

Heating at
constant volume

P

VV V

P

P

T

T

T
1

1

1

2

2

2
2

The figure shows the thermodynamic cycle of an engine. The efficiency of this
engine for monatomic gas is

η = ln(T2/T1) − (1 − T1/T2)
ln(T2/T1) + (1 − T1/T2)/(γ − 1)

where T is the absolute temperature and γ = 5/3. Find T2/T1 that results in 30%
efficiency (η = 0.3).
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21. � The Gibbs free energy of 1 mole of hydrogen at temperature T is

G = −RT ln
[
(T/T0)5/2] J

where R = 8.314 41 J/K is the gas constant and T0 = 4.444 18 K. Determine the
temperature at which G = −105 J.

22. � The chemical equilibrium equation in the production of methanol from CO
and H2 is1

ξ (3 − 2ξ )2

(1 − ξ )3
= 249.2

where ξ is the equilibrium extent of the reaction. Determine ξ .
23. � Determine the coordinates of the two points where the circles (x − 2)2 + y2 = 4

and x2 + (y − 3)2 = 4 intersect. Start by estimating the locations of the points
from a sketch of the circles, and then use the Newton–Raphson method to com-
pute the coordinates.

24. � The equations

sin x + 3 cos x − 2 = 0

cos x − sin y + 0.2 = 0

have a solution in the vicinity of the point (1, 1). Use the Newton–Raphson
method to refine the solution.

25. � Use any method to find all real solutions of the simultaneous equations

tan x − y = 1

cos x − 3 sin y = 0

in the region 0 ≤ x ≤ 1.5.
26. � The equation of a circle is

(x − a)2 + (y − b)2 = R2

where R is the radius and (a , b) are the coordinates of the center. If the coordi-
nates of three points on the circle are

x (in.) 8.21 0.34 5.96

y (in.) 0.00 6.62 −1.12

determine R, a , and b.

27. �

O

R

θ

1 From R. A. Alberty, Physical Chemistry, 7th ed. (Wiley, 1987).

Downloaded from Cambridge Books Online by IP 141.85.241.163 on Tue Mar 22 17:49:37 GMT 2016.
http://dx.doi.org/10.1017/CBO9780511812224.006

Cambridge Books Online © Cambridge University Press, 2016



165 4.6 Systems of Equations

The trajectory of a satellite orbiting the earth is

R = C
1 + e sin(θ + α)

where (R, θ) are the polar coordinates of the satellite, and C , e, and α are con-
stants (e is known as the eccentricity of the orbit). If the satellite was observed at
the three positions

θ −30◦ 0◦ 30◦

R (km) 6870 6728 6615

determine the smallest R of the trajectory and the corresponding value of θ .
28. �

300 m

61 m

45o
y

xO

v

θ

A projectile is launched at O with the velocity v at the angle θ to the horizontal.
The parametric equation of the trajectory is

x = (v cos θ)t

y = −1
2

gt 2 + (v sin θ)t

where t is the time measured from instant of launch, and g = 9.81 m/s2 repre-
sents the gravitational acceleration. If the projectile is to hit the target at the 45◦

angle shown in the figure, determine v, θ , and the time of flight.
29. �

200 mm

15
0 

m
m

180 mm

20
0 

m
m

θ

θ

1

2

3θ

y

x
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166 Roots of Equations

The three angles shown in the figure of the four-bar linkage are related by

150 cos θ1 + 180 cos θ2 − 200 cos θ3 = 200

150 sin θ1 + 180 sin θ2 − 200 sin θ3 = 0

Determine θ1 and θ2 when θ3 = 75◦. Note that there are two solutions.
30. �

A

B

C

D

16 kN

20 kN

12 m

4 m

6 m
5 m

3 m1θ

θ2

θ3

The 15-m cable is suspended from A and D and carries concentrated loads at B
and C . The vertical equilibrium equations of joints B and C are

T(− tan θ2 + tan θ1) = 16

T(tan θ3 + tan θ2) = 20

where T is the horizontal component of the cable force (it is the same in all seg-
ments of the cable). In addition, there are two geometric constraints imposed by
the positions of the supports:

−4 sin θ1 − 6 sin θ2 + 5 sin θ2 = −3

4 cos θ1 + 6 cos θ2 + 5 cos θ3 = 12

Determine the angles θ1, θ2, and θ3.

∗4.7 Zeroes of Polynomials

Introduction

A polynomial of degree n has the form

Pn(x) = a0 + a1x + a2x2 + · · · + anxn (4.9)

where the coefficients ai may be real or complex. We concentrate on polynomials
with real coefficients, but the algorithms presented in this section also work with
complex coefficients.

The polynomial equation Pn(x) = 0 has exactly n roots, which may be real or
complex. If the coefficients are real, the complex roots always occur in conjugate
pairs (xr + ixi , xr − ixi ), where xr and xi are the real and imaginary parts, respectively.
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167 ∗4.7 Zeroes of Polynomials

For real coefficients, the number of real roots can be estimated from the rule of
Descartes:

• The number of positive, real roots equals the number of sign changes in the ex-
pression for Pn(x), or less by an even number.

• The number of negative, real roots is equal to the number of sign changes in
Pn(−x), or less by an even number.

As an example, consider P3(x) = x3 − 2x2 − 8x + 27. Because the sign changes
twice, P3(x) = 0 has either two or zero positive real roots. On the other hand,
P3(−x) = −x3 − 2x2 + 8x + 27 contains a single sign change; hence P3(x) possesses
one negative real zero.

The real zeroes of polynomials with real coefficients can always be computed by
one of the methods already described. But if complex roots are to be computed, it
is best to use a method that specializes in polynomials. Here we present a method
due to Laguerre, which is reliable and simple to implement. Before proceeding to La-
guerre’s method, we must first develop two numerical tools that are needed in any
method capable of determining the zeroes of a polynomial. The first of these is an
efficient algorithm for evaluating a polynomial and its derivatives. The second algo-
rithm we need is for the deflation of a polynomial, that is, for dividing the Pn(x) by
x − r , where r is a root of Pn(x) = 0.

Evaluation Polynomials

It is tempting to evaluate the polynomial in Eq. (4.9) from left to right by the following
algorithm (we assume that the coefficients are stored in the array a):

p = 0.0

for i in range(n+1):

p = p + a[i]*x**i

Because xk is evaluated as x × x × · · · × x (k − 1 multiplications), we deduce that
the number of multiplications in this algorithm is

1 + 2 + 3 + · · · + n − 1 = 1
2

n(n − 1)

If n is large, the number of multiplications can be reduced considerably if we evaluate
the polynomial from right to left. For an example, take

P4(x) = a0 + a1x + a2x2 + a3x3 + a4x4

After rewriting the polynomial as

P4(x) = a0 + x {a1 + x [a2 + x (a3 + xa4)]}
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168 Roots of Equations

the preferred computational sequence becomes obvious:

P0(x) = a4

P1(x) = a3 + x P0(x)

P2(x) = a2 + x P1(x)

P3(x) = a1 + x P2(x)

P4(x) = a0 + x P3(x)

For a polynomial of degree n, the procedure can be summarized as

P0(x) = an

Pi (x) = an−i + x Pi−1(x), i = 1, 2, . . . , n (4.10)

leading to the algorithm

p = a[n]

for i in range(1,n+1):

p = a[n-i] + p*x

The last algorithm involves only n multiplications, making it more efficient
for n > 3. But computational economy is not the prime reason why this algorithm
should be used. Because the result of each multiplication is rounded off, the proce-
dure with the least number of multiplications invariably accumulates the smallest
roundoff error.

Some root-finding algorithms, including Laguerre’s method, also require evalua-
tion of the first and second derivatives of Pn(x). From Eq. (4.10) we obtain by differ-
entiation

P ′
0(x) = 0 P ′

i (x) = Pi−1(x) + x P ′
i−1(x), i = 1, 2, . . . , n (4.11a)

P ′′
0 (x) = 0 P ′′

i (x) = 2P ′
i−1(x) + x P ′′

i−1(x), i = 1, 2, . . . , n (4.11b)

� evalPoly

Here is the function that evaluates a polynomial and its derivatives:

## module evalPoly

’’’ p,dp,ddp = evalPoly(a,x).

Evaluates the polynomial

p = a[0] + a[1]*x + a[2]*xˆ2 +...+ a[n]*xˆn

with its derivatives dp = p’ and ddp = p’’

at x.

’’’

def evalPoly(a,x):

n = len(a) - 1

p = a[n]
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169 ∗4.7 Zeroes of Polynomials

dp = 0.0 + 0.0j

ddp = 0.0 + 0.0j

for i in range(1,n+1):

ddp = ddp*x + 2.0*dp

dp = dp*x + p

p = p*x + a[n-i]

return p,dp,ddp

Deflation of Polynomials

After a root r of Pn(x) = 0 has been computed, it is desirable to factor the polynomial
as follows:

Pn(x) = (x − r )Pn−1(x) (4.12)

This procedure, known as deflation or synthetic division, involves nothing more than
computing the coefficients of Pn−1(x). Because the remaining zeroes of Pn(x) are also
the zeroes of Pn−1(x), the root-finding procedure can now be applied to Pn−1(x) rather
than Pn(x). Deflation thus makes it progressively easier to find successive roots, be-
cause the degree of the polynomial is reduced every time a root is found. Moreover,
by eliminating the roots that have already been found, the chances of computing the
same root more than once are eliminated.

If we let

Pn−1(x) = b0 + b1x + b2x2 + · · · + bn−1xn−1

then Eq. (4.12) becomes

a0 + a1x + a2x2 + · · · + an−1xn−1 + anxn

= (x − r )(b0 + b1x + b2x2 + · · · + bn−1xn−1)

Equating the coefficients of like powers of x, we obtain

bn−1 = an bn−2 = an−1 + rbn−1 · · · b0 = a1 + rb1 (4.13)

which leads to Horner’s deflation algorithm:

b[n-1] = a[n]

for i in range(n-2,-1,-1):

b[i] = a[i+1] + r*b[i+1]

Laguerre’s Method

Laquerre’s formulas are not easily derived for a general polynomial Pn(x). However,
the derivation is greatly simplified if we consider the special case where the polyno-
mial has a zero at x = r and (n − 1) zeroes at x = q . Hence, the polynomial can be
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170 Roots of Equations

written as

Pn(x) = (x − r )(x − q)n−1 (a)

Our problem is now this: given the polynomial in Eq. (a) in the form

Pn(x) = a0 + a1x + a2x2 + · · · + anxn

determine r (note that q is also unknown). It turns out that the result, which is ex-
act for the special case considered here, works well as an iterative formula with any
polynomial.

Differentiating Eq. (a) with respect to x, we get

P ′
n(x) = (x − q)n−1 + (n − 1)(x − r )(x − q)n−2

= Pn(x)
(

1
x − r

+ n − 1
x − q

)

Thus,

P ′
n(x)

Pn(x)
= 1

x − r
+ n − 1

x − q
(b)

which upon differentiation yields

P ′′
n (x)

Pn(x)
−
[

P ′
n(x)

Pn(x)

]2

= − 1
(x − r )2

− n − 1
(x − q)2

(c)

It is convenient to introduce the notation

G(x) = P ′
n(x)

Pn(x)
H(x) = G2(x) − P ′′

n (x)
Pn(x)

(4.14)

so that Eqs. (b) and (c) become

G(x) = 1
x − r

+ n − 1
x − q

(4.15a)

H(x) = 1
(x − r )2

+ n − 1
(x − q)2

(4.15b)

If we solve Eq. (4.15a) for x − q and substitute the result into Eq. (4.15b), we obtain a
quadratic equation for x − r. The solution of this equation is the Laguerre’s formula

x − r = n

G(x) ±
√

(n − 1)
[
nH(x) − G2(x)

] (4.16)

The procedure for finding a zero of a general polynomial by Laguerre’s formula
is:

1. Let x be a guess for the root of Pn(x) = 0 (any value will do).
2. Evaluate Pn(x), P ′

n(x), and P ′′
n (x) using the procedure outlined in Eqs. (4.11).

3. Compute G(x) and H(x) from Eqs. (4.14).
4. Determine the improved root r from Eq. (4.16) choosing the sign that results in the

larger magnitude of the denominator (this can be shown to improve convergence).
5. Let x ← r and repeat steps 2–5 until |Pn(x)| < ε or |x − r | < ε, where ε is the error

tolerance.
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171 ∗4.7 Zeroes of Polynomials

One nice property of Laguerre’s method is that it converges to a root, with very
few exceptions, from any starting value of x.

� polyRoots

The function polyRoots in this module computes all the roots of Pn(x) = 0, where
the polynomial Pn(x) defined by its coefficient array a = [a0, a1, . . . , an]. After the first
root is computed by the nested function laguerre, the polynomial is deflated using
deflPoly and the next zero computed by applying laguerre to the deflated poly-
nomial. This process is repeated until all n roots have been found. If a computed root
has a very small imaginary part, it is more than likely that it represents roundoff error.
Therefore, polyRoots replaces a tiny imaginary part by zero.

from evalPoly import *

from numpy import zeros,complex

from cmath import sqrt

from random import random

def polyRoots(a,tol=1.0e-12):

def laguerre(a,tol):

x = random() # Starting value (random number)

n = len(a) - 1

for i in range(30):

p,dp,ddp = evalPoly(a,x)

if abs(p) < tol: return x

g = dp/p

h = g*g - ddp/p

f = sqrt((n - 1)*(n*h - g*g))

if abs(g + f) > abs(g - f): dx = n/(g + f)

else: dx = n/(g - f)

x = x - dx

if abs(dx) < tol: return x

print ’Too many iterations’

def deflPoly(a,root): # Deflates a polynomial

n = len(a)-1

b = [(0.0 + 0.0j)]*n

b[n-1] = a[n]

for i in range(n-2,-1,-1):

b[i] = a[i+1] + root*b[i+1]

return b

n = len(a) - 1

roots = zeros((n),dtype=complex)
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172 Roots of Equations

for i in range(n):

x = laguerre(a,tol)

if abs(x.imag) < tol: x = x.real

roots[i] = x

a = deflPoly(a,x)

return roots

raw_input("\nPress return to exit")

Because the roots are computed with finite accuracy, each deflation introduces
small errors in the coefficients of the deflated polynomial. The accumulated roundoff
error increases with the degree of the polynomial and can become severe if the poly-
nomial is ill conditioned (small changes in the coefficients produce large changes in
the roots). Hence, the results should be viewed with caution when dealing with poly-
nomials of high degree.

The errors caused by deflation can be reduced by recomputing each root using
the original, undeflated polynomial. The roots obtained previously in conjunction
with deflation are employed as the starting values.

EXAMPLE 4.10
A zero of the polynomial P4(x) = 3x4 − 10x3 − 48x2 − 2x + 12 is x = 6. Deflate the
polynomial with Horner’s algorithm, that is, find P3(x) so that (x − 6)P3(x) = P4(x).

Solution With r = 6 and n = 4, Eqs. (4.13) become

b3 = a4 = 3

b2 = a3 + 6b3 = −10 + 6(3) = 8

b1 = a2 + 6b2 = −48 + 6(8) = 0

b0 = a1 + 6b1 = −2 + 6(0) = −2

Therefore,

P3(x) = 3x3 + 8x2 − 2

EXAMPLE 4.11
A root of the equation P3(x) = x3 − 4.0x2 − 4.48x + 26.1 is approximately x = 3 − i.
Find a more accurate value of this root by one application of Laguerre’s iterative
formula.

Solution Use the given estimate of the root as the starting value. Thus,

x = 3 − i x2 = 8 − 6i x3 = 18 − 26i
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173 ∗4.7 Zeroes of Polynomials

Substituting these values in P3(x) and its derivatives, we get

P3(x) = x3 − 4.0x2 − 4.48x + 26.1

= (18 − 26i) − 4.0(8 − 6i) − 4.48(3 − i) + 26.1 = −1.34 + 2.48i

P ′
3(x) = 3.0x2 − 8.0x − 4.48

= 3.0(8 − 6i) − 8.0(3 − i) − 4.48 = −4.48 − 10.0i

P ′′
3 (x) = 6.0x − 8.0 = 6.0(3 − i) − 8.0 = 10.0 − 6.0i

Equations (4.14) then yield

G(x) = P ′
3(x)

P3(x)
= −4.48 − 10.0i

−1.34 + 2.48i
= −2.36557 + 3.08462i

H(x) = G2(x) − P ′′
3 (x)

P3(x)
= (−2.36557 + 3.08462i)2 − 10.0 − 6.0i

−1.34 + 2.48i

= 0.35995 − 12.48452i

The term under the square root sign of the denominator in Eq. (4.16) becomes

F (x) =
√

(n − 1)
[
n H(x) − G2(x)

]
=
√

2
[
3(0.35995 − 12.48452i) − (−2.36557 + 3.08462i)2

]
=
√

5.67822 − 45.71946i = 5.08670 − 4.49402i

Now we must find which sign in Eq. (4.16) produces the larger magnitude of the de-
nominator:

|G(x) + F (x)| = |(−2.36557 + 3.08462i) + (5.08670 − 4.49402i)|
= |2.72113 − 1.40940i| = 3.06448

|G(x) − F (x)| = |(−2.36557 + 3.08462i) − (5.08670 − 4.49402i)|
= |−7.45227 + 7.57864i| = 10.62884

Using the minus sign, Eq. (4.16) yields the following improved approximation for the
root:

r = x − n
G(x) − F (x)

= (3 − i) − 3
−7.45227 + 7.57864i

= 3.19790 − 0.79875i

Thanks to the good starting value, this approximation is already quite close to the
exact value r = 3.20 − 0.80i.
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EXAMPLE 4.12
Use polyRoots to compute all the roots of x4 − 5x3 − 9x2 + 155x − 250 = 0.

Solution The commands

>>> from polyRoots import *

>>> print polyRoots([-250.0,155.0,-9.0,-5.0,1.0])

resulted in the output

[ 2.+0.j 4.-3.j 4.+3.j -5.+0.j]

PROBLEM SET 4.2

Problems 1–5 A zero x = r of Pn(x) is given. Verify that r is indeed a zero, and then
deflate the polynomial, that is, find Pn−1(x) so that Pn(x) = (x − r )Pn−1(x).

1. P3(x) = 3x3 + 7x2 − 36x + 20, r = −5.

2. P4(x) = x4 − 3x2 + 3x − 1, r = 1.

3. P5(x) = x5 − 30x4 + 361x3 − 2178x2 + 6588x − 7992, r = 6.

4. P4(x) = x4 − 5x3 − 2x2 − 20x − 24, r = 2i.
5. P3(x) = 3x3 − 19x2 + 45x − 13, r = 3 − 2i.

Problems 6–9 A zero x = r of Pn(x) is given. Determine all the other zeroes of Pn(x)
by using a calculator. You should need no tools other than deflation and the quadratic
formula.

6. P3(x) = x3 + 1.8x2 − 9.01x − 13.398,, r = −3.3.

7. P3(x) = x3 − 6.64x2 + 16.84x − 8.32, r = 0.64.

8. P3(x) = 2x3 − 13x2 + 32x − 13, r = 3 − 2i.
9. P4(x) = x4 − 3x2 + 10x2 − 6x − 20, r = 1 + 3i.

Problems 10–15 Find all the zeroes of the given Pn(x).

10. �P4(x) = x4 + 2.1x3 − 2.52x2 + 2.1x − 3.52.

11. �P5(x) = x5 − 156x4 − 5x3 + 780x2 + 4x − 624.

12. �P6(x) = x6 + 4x5 − 8x4 − 34x3 + 57x2 + 130x − 150.

13. �P7(x) = 8x7 + 28x6 + 34x5 − 13x4 − 124x3 + 19x2 + 220x − 100.

14. �P8(x) = x8 − 7x7 + 7x6 + 25x5 + 24x4 − 98x3 − 472x2 + 440x + 800.

15. �P4(x) = x4 + (5 + i)x3 − (8 − 5i)x2 + (30 − 14i)x − 84.

16. �
The two blocks of mass m each are connected by springs and a dashpot. The stiff-
ness of each spring is k, and c is the coefficient of damping of the dashpot. When
the system is displaced and released, the displacement of each block during the
ensuing motion has the form

xk (t ) = A keωr t cos(ωit + φk ), k = 1, 2
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k

m

m

c

x

x

1

2

k

where A k and φk are constants, and ω = ωr ± iωi are the roots of

ω4 + 2
c
m

ω3 + 3
k
m

ω2 + c
m

k
m

ω +
(

k
m

)2

= 0

Determine the two possible combinations of ωr and ωi if c/m = 12 s−1 and
k/m = 1500 s−2.

17.

L
y

x

w0

The lateral deflection of the beam shown is

y = w0

120E I
(x5 − 3L2x3 + 2L3x2)

where ω0 is the maximum load intensity and E I represents the bending rigidity.
Determine the value of x/L where the maximum displacement occurs.

Other Methods

The most prominent root-finding algorithm omitted from this chapter is Brent’s
method, which combines bisection and quadratic interpolation. It is potentially more
efficient than Ridder’s method, requiring only one function evaluation per iteration
(as compared to two evaluations in Ridder’s method), but this advantage is somewhat
negated by elaborate bookkeeping.
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There are many methods for finding zeroes of polynomials. Of these, the Jenkins-
Traub algorithm2 deserves special mention because of its robustness and widespread
use in packaged software.

The zeroes of a polynomial can also be obtained by calculating the eigenvalues
of the n × n “companion matrix”

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

−an−1/an −a2/an · · · −a1/an −a0/an

1 0 · · · 0 0
0 0 0 0
...

...
...

...
0 0 · · · 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

where ai are the coefficients of the polynomial. The characteristic equation (see Sec-
tion 9.1) of this matrix is

xn + an−1

an
xn−1 + an−2

an
xn−2 + · · · + a1

an
x + a0

an
= 0

which is equivalent to Pn(x) = 0. Thus the eigenvalues of A are the zeroes of Pn(x).
The eigenvalue method is robust, but considerably slower than Laguerre’s method.
But it is worthy of consideration if a good program for eigenvalue problems is
available.

2 M. Jenkins and J. Traub, SIAM Journal on Numerical Analysis, Vol. 7 (1970), p. 545.
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