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9 Symmetric Matrix Eigenvalue Problems

Find λ for which nontrivial solutions of Ax = λx exist.

9.1 Introduction

The standard form of the matrix eigenvalue problem is

Ax = λx (9.1)

where A is a given n × n matrix. The problem is to find the scalar λ and the vector x.
Rewriting Eq. (9.1) in the form

(A − λI) x = 0 (9.2)

it becomes apparent that we are dealing with a system of n homogeneous equations.
An obvious solution is the trivial one x = 0. A nontrivial solution can exist only if the
determinant of the coefficient matrix vanishes, that is, if

|A − λI| = 0 (9.3)

Expansion of the determinant leads to the polynomial equation, also known as the
characteristic equation

a0 + a1λ + a2λ
2 + · · · + anλn = 0

which has the roots λi , i = 1, 2, . . . , n, called the eigenvalues of the matrix A. The so-
lutions xi of (A − λi I) x = 0 are known as the eigenvectors..

As an example, consider the matrix

A =

⎡
⎢⎣ 1 −1 0

−1 2 −1
0 −1 1

⎤
⎥⎦ (a)
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320 Symmetric Matrix Eigenvalue Problems

The characteristic equation is

|A − λI| =

∣∣∣∣∣∣∣
1 − λ −1 0
−1 2 − λ −1
0 −1 1 − λ

∣∣∣∣∣∣∣ = −3λ + 4λ2 − λ3 = 0 (b)

The roots of this equation are λ1 = 0, λ2 = 1, λ3 = 3. To compute the eigenvector cor-
responding the λ3, we substitute λ = λ3 into Eq. (9.2), obtaining

⎡
⎢⎣−2 −1 0

−1 −1 −1
0 −1 −2

⎤
⎥⎦
⎡
⎢⎣ x1

x2

x3

⎤
⎥⎦ =

⎡
⎢⎣0

0
0

⎤
⎥⎦ (c)

We know that the determinant of the coefficient matrix is zero, so that the equations
are not linearly independent. Therefore, we can assign an arbitrary value to any one
component of x and use two of the equations to compute the other two components.
Choosing x1 = 1, the first equation of Eq. (c) yields x2 = −2 and from the third equa-
tion we get x3 = 1. Thus, the eigenvector associated with λ3 is

x3 =

⎡
⎢⎣ 1

−2
1

⎤
⎥⎦

The other two eigenvectors

x2 =

⎡
⎢⎣ 1

0
−1

⎤
⎥⎦ x1 =

⎡
⎢⎣1

1
1

⎤
⎥⎦

can be obtained in the same manner.
It is sometimes convenient to display the eigenvectors as columns of a matrix X.

For the problem at hand, this matrix is

X =
[

x1 x2 x3

]
=

⎡
⎢⎣1 1 1

1 0 −2
1 −1 1

⎤
⎥⎦

It is clear from the foregoing example that the magnitude of an eigenvector is
indeterminate; only its direction can be computed from Eq. (9.2). It is customary to
normalize the eigenvectors by assigning a unit magnitude to each vector. Thus, the
normalized eigenvectors in our example are

X =

⎡
⎢⎣1/

√
3 1/

√
2 1/

√
6

1/
√

3 0 −2/
√

6
1/

√
3 −1/

√
2 1/

√
6

⎤
⎥⎦

Throughout this chapter, we assume that the eigenvectors are normalized.
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321 9.2 Jacobi Method

Here are some useful properties of eigenvalues and eigenvectors, given without
proof:

• All the eigenvalues of a symmetric matrix are real.
• All the eigenvalues of a symmetric, positive-definite matrix are real and positive.
• The eigenvectors of a symmetric matrix are orthonormal, that is, XT X = I.
• If the eigenvalues of A are λi , then the eigenvalues of A−1 are λ−1

i .

Eigenvalue problems that originate from physical problems often end up with a
symmetric A. This is fortunate, because symmetric eigenvalue problems are easier to
solve than their nonsymmetric counterparts (which may have complex eigenvalues).
In this chapter, we largely restrict our discussion to eigenvalues and eigenvectors of
symmetric matrices.

Common sources of eigenvalue problems are the analysis of vibrations and sta-
bility. These problems often have the following characteristics:

• The matrices are large and sparse (e.g., have a banded structure).
• We need to know only the eigenvalues; if eigenvectors are required, only a few of

them are of interest.

A useful eigenvalue solver must be able to utilize these characteristics to mini-
mize the computations. In particular, it should be flexible enough to compute only
what we need and no more.

9.2 Jacobi Method

The Jacobi method is a relatively simple iterative procedure that extracts all the
eigenvalues and eigenvectors of a symmetric matrix. Its utility is limited to small
matrices (less than 20 × 20), because the computational effort increases very rapidly
with the size of the matrix. The main strength of the method is its robustness – it
seldom fails to deliver.

Similarity Transformation and Diagonalization

Consider the standard matrix eigenvalue problem

Ax = λx (9.4)

where A is symmetric. Let us now apply the transformation

x = Px∗ (9.5)

where P is a nonsingular matrix. Substituting Eq. (9.5) into Eq. (9.4) and premultiply-
ing each side by P−1, we get

P−1APx∗ = λP−1Px∗
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322 Symmetric Matrix Eigenvalue Problems

or

A∗x∗ = λx∗ (9.6)

where A∗ = P−1AP. Because λ was untouched by the transformation, the eigenval-
ues of A are also the eigenvalues of A∗. Matrices that have the same eigenvalues are
deemed to be similar, and the transformation between them is called a similarity
transformation.

Similarity transformations are frequently used to change an eigenvalue problem
to a form that is easier to solve. Suppose that we managed by some means to find a P
that diagonalizes A∗. Equations (9.6) then are

⎡
⎢⎢⎢⎢⎣

A∗
11 − λ 0 · · · 0

0 A∗
22 − λ · · · 0

...
...

. . .
...

0 0 · · · A∗
nn − λ

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

x∗
1

x∗
2

...
x∗

n

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

0
0
...
0

⎤
⎥⎥⎥⎥⎦

which have the solutions

λ1 = A∗
11 λ2 = A∗

22 · · · λn = A∗
nn (9.7)

x∗
1 =

⎡
⎢⎢⎢⎢⎣

1
0
...
0

⎤
⎥⎥⎥⎥⎦ x∗

2 =

⎡
⎢⎢⎢⎢⎣

0
1
...
0

⎤
⎥⎥⎥⎥⎦ · · · x∗

n =

⎡
⎢⎢⎢⎢⎣

0
0
...
1

⎤
⎥⎥⎥⎥⎦

or

X∗ =
[

x∗
1 x∗

2 · · · x∗
n

]
= I

According to Eq. (9.5), the eigenvectors of A are

X = PX∗ = PI = P (9.8)

Hence, the transformation matrix P contains the eigenvectors of A, and the eigenval-
ues of A are the diagonal terms of A∗.

Jacobi Rotation

A special similarity transformation is the plane rotation

x = Rx∗ (9.9)
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323 9.2 Jacobi Method

where

k �

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 c 0 0 s 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 −s 0 0 c 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

k

�

(9.10)

is called the Jacobi rotation matrix. Note that R is an identity matrix modified by the
terms c = cos θ and s = sin θ appearing at the intersections of columns/rows k and
�, where θ is the rotation angle. The rotation matrix has the useful property of being
orthogonal, meaning that

R−1 = RT (9.11)

One consequence of orthogonality is that the transformation in Eq. (9.5) has the es-
sential characteristic of a rotation: It preserves the magnitude of the vector, that is,
|x| = |x∗|.

The similarity transformation corresponding to the plane rotation in Eq. (9.9) is

A∗ = R−1AR = RT AR (9.12)

The matrix A∗ not only has the same eigenvalues as the original matrix A, but thanks
to orthogonality of R, it is also symmetric. The transformation in Eq. (9.12) changes
only the rows/columns k and � of A. The formulas for these changes are

A∗
kk = c2A kk + s2A �� − 2csA k�

A∗
�� = c2A �� + s2A kk + 2csA k�

A∗
k� = A∗

�k = (c2 − s2)A k� + cs(A kk − A ��) (9.13)

A∗
ki = A∗

ik = cA ki − sA �i , i �= k, i �= �

A∗
�i = A∗

i� = cA �i + sA ki , i �= k, i �= �

Jacobi Diagonalization

The angle θ in the Jacobi rotation matrix can be chosen so that A∗
k�

= A∗
�k = 0. This

suggests the following idea: Why not diagonalize A by looping through all the off-
diagonal terms and zero them one by one? This is exactly what Jacobi diagonalization
does. However, there is a major snag – the transformation that annihilates an off-
diagonal term also undoes some of the previously created zeroes. Fortunately, it turns
out that the off-diagonal terms that reappear will be smaller than before. Thus, the
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324 Symmetric Matrix Eigenvalue Problems

Jacobi method is an iterative procedure that repeatedly applies Jacobi rotations until
the off-diagonal terms have virtually vanished. The final transformation matrix P is
the accumulation of individual rotations Ri :

P = R1·R2·R3 · ·· (9.14)

The columns of P finish up being the eigenvectors of A, and the diagonal elements of
A∗ = PT AP become the eigenvectors.

Let us now look at details of a Jacobi rotation. From Eq. (9.13), we see that A∗
k�

= 0
if

(c2 − s2)A k� + cs(A kk − A ��) = 0 (a)

Using the trigonometric identities c2 − s2 = cos2 θ − sin2 θ = cos 2θ and cs =
cos θ sin θ = (1/2) sin 2θ , Eq. (a) yields

tan 2θ = − 2A k�

A kk − A ��

(b)

which could be solved for θ , followed by computation of c = cos θ and s = sin θ . How-
ever, the procedure described next leads to better algorithm.1

Introducing the notation

φ = cot 2θ = −A kk − A ��

2A k�

(9.15)

and utilizing the trigonometric identity

tan 2θ = 2t
(1 − t 2)

where t = tan θ , Eq. (b) can be written as

t 2 + 2φt − 1 = 0

which has the roots

t = −φ ±
√

φ2 + 1

It has been found that the root |t | ≤ 1, which corresponds to |θ | ≤ 45◦, leads to the
more stable transformation. Therefore, we choose the plus sign if φ > 0 and the mi-
nus sign if φ ≤ 0, which is equivalent to using

t = sgn(φ)
(

− |φ| +
√

φ2 + 1
)

To forestall excessive roundoff error if φ is large, we multiply both sides of the equa-
tion by |φ| +

√
φ2 + 1, which yields

t = sgn(φ)

|φ| +
√

φ2 + 1
(9.16a)

1 The procedure is adapted from W. H. Press et al., Numerical Recipes in Fortran, 2nd ed. (Cambridge
University Press, 1992).
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325 9.2 Jacobi Method

In the case of very large φ, we should replace Eq. (9.16a) by the approximation

t = 1
2φ

(9.16b)

to prevent overflow in the computation of φ2. Having computed t , we can use the
trigonometric relationship tan θ = sin θ/ cos θ = √

1 − cos2 θ/ cos θ to obtain

c = 1√
1 + t 2

s = tc (9.17)

We now improve the transformation formulas in Eqs. (9.13). Solving Eq. (a) for
A ��, we obtain

A �� = A kk + A k�

c2 − s2

cs
(c)

Replacing all occurrences of A �� by Eq. (c) and simplifying, the transformation for-
mulas in Eqs.(9.13) can be written as

A∗
kk = A kk − tA k�

A∗
�� = A �� + tA k�

A∗
k� = A∗

�k = 0 (9.18)

A∗
ki = A∗

ik = A ki − s(A �i + τA ki ), i �= k, i �= �

A∗
�i = A∗

i� = A �i + s(A ki − τA �i ), i �= k, i �= �

where

τ = s
1 + c

(9.19)

The introduction of τ allowed us to express each formula in the form (original value)
+ (change), which is helpful in reducing the roundoff error.

At the start of Jacobi’s diagonalization process, the transformation matrix P is
initialized to the identity matrix. Each Jacobi rotation changes this matrix from P to
P∗ = PR. The corresponding changes in the elements of P can be shown to be (only
the columns k and � are affected)

P∗
ik = Pik − s(Pi� + τ Pik ) (9.20)

P∗
i� = Pi� + s(Pik − τ Pi�)

We still have to decide the order in which the off-diagonal elements of A are to
be eliminated. Jacobi’s original idea was to attack the largest element because this
results in fewest number of rotations. The problem here is that A has to be searched
for the largest element after every rotation, which is a time-consuming process. If the
matrix is large, it is faster to sweep through it by rows or columns and annihilate ev-
ery element above some threshold value. In the next sweep, the threshold is lowered
and the process repeated. We adopt Jacobi’s original scheme because of its simpler
implementation.
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326 Symmetric Matrix Eigenvalue Problems

In summary, the Jacobi diagonalization procedure, which uses only the upper
half of the matrix, is:

1. Find the largest (absolute value) off-diagonal element A k� in the upper half of A.

2. Compute φ, t , c, and s from Eqs. (9.15)–(9.17).
3. Compute τ from Eq. (9.19)
4. Modify the elements in the upper half of A according to Eqs. (9.18).
5. Update the transformation matrix P using Eqs. (9.20).
6. Repeat steps 1–5 until |A k�| < ε, where ε is the error tolerance.

� jacobi

This function computes all eigenvalues λi and eigenvectors xi of a symmetric, n × n
matrix A by the Jacobi method. The algorithm works exclusively with the upper tri-
angular part of A, which is destroyed in the process. The principal diagonal of A is re-
placed by the eigenvalues, and the columns of the transformation matrix P become
the normalized eigenvectors.

## module jacobi

’’’ lam,x = jacobi(a,tol = 1.0e-9).

Solution of std. eigenvalue problem [a]{x} = lambda{x}

by Jacobi’s method. Returns eigenvalues in vector {lam}

and the eigenvectors as columns of matrix [x].

’’’

from numpy import array,identity,diagonal

from math import sqrt

def jacobi(a,tol = 1.0e-9):

def maxElem(a): # Find largest off-diag. element a[k,l]

n = len(a)

aMax = 0.0

for i in range(n-1):

for j in range(i+1,n):

if abs(a[i,j]) >= aMax:

aMax = abs(a[i,j])

k = i; l = j

return aMax,k,l

def rotate(a,p,k,l): # Rotate to make a[k,l] = 0

n = len(a)

aDiff = a[l,l] - a[k,k]

if abs(a[k,l]) < abs(aDiff)*1.0e-36: t = a[k,l]/aDiff

else:
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327 9.2 Jacobi Method

phi = aDiff/(2.0*a[k,l])

t = 1.0/(abs(phi) + sqrt(phi**2 + 1.0))

if phi < 0.0: t = -t

c = 1.0/sqrt(t**2 + 1.0); s = t*c

tau = s/(1.0 + c)

temp = a[k,l]

a[k,l] = 0.0

a[k,k] = a[k,k] - t*temp

a[l,l] = a[l,l] + t*temp

for i in range(k): # Case of i < k

temp = a[i,k]

a[i,k] = temp - s*(a[i,l] + tau*temp)

a[i,l] = a[i,l] + s*(temp - tau*a[i,l])

for i in range(k+1,l): # Case of k < i < l

temp = a[k,i]

a[k,i] = temp - s*(a[i,l] + tau*a[k,i])

a[i,l] = a[i,l] + s*(temp - tau*a[i,l])

for i in range(l+1,n): # Case of i > l

temp = a[k,i]

a[k,i] = temp - s*(a[l,i] + tau*temp)

a[l,i] = a[l,i] + s*(temp - tau*a[l,i])

for i in range(n): # Update transformation matrix

temp = p[i,k]

p[i,k] = temp - s*(p[i,l] + tau*p[i,k])

p[i,l] = p[i,l] + s*(temp - tau*p[i,l])

n = len(a)

maxRot = 5*(n**2) # Set limit on number of rotations

p = identity(n)*1.0 # Initialize transformation matrix

for i in range(maxRot): # Jacobi rotation loop

aMax,k,l = maxElem(a)

if aMax < tol: return diagonal(a),p

rotate(a,p,k,l)

print ’Jacobi method did not converge’

� sortJacobi

The eigenvalues/eigenvectors returned by jacobi are not ordered. The function
listed here can be used to sort the eigenvalues and eigenvectors into ascending or-
der of eigenvalues.

## module sortJacobi

’’’ sortJacobi(lam,x).

Sorts the eigenvalues {lam} and eigenvectors [x]
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328 Symmetric Matrix Eigenvalue Problems

in order of ascending eigenvalues.

’’’

import swap

def sortJacobi(lam,x):

n = len(lam)

for i in range(n-1):

index = i

val = lam[i]

for j in range(i+1,n):

if lam[j] < val:

index = j

val = lam[j]

if index != i:

swap.swapRows(lam,i,index)

swap.swapCols(x,i,index)

Transformation to Standard Form

Physical problems often give rise to eigenvalue problems of the form

Ax = λBx (9.21)

where A and B are symmetric n × n matrices. We assume that B is also positive defi-
nite. Such problems must be transformed into the standard form before they can be
solved by Jacobi diagonalization.

As B is symmetric and positive definite, we can apply Choleski decomposition
B = LLT , where L is a lower-triangular matrix (see Section 3.3). Then we introduce
the transformation

x = (L−1)T z (9.22)

Substituting into Eq. (9.21), we get

A(L−1)T z =λLLT (L−1)T z

Premultiplying both sides by L−1 results in

L−1A(L−1)T z = λL−1LLT (L−1)T z

If we note that L−1L = LT (L−1)T = I, the last equation reduces to the standard form

Hz = λz (9.23)

where

H = L−1A(L−1)T (9.24)
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329 9.2 Jacobi Method

An important property of this transformation is that it does not destroy the symmetry
of the matrix, that is, symmetric A results in symmetric H.

Here is the general procedure for solving eigenvalue problems of the form Ax =
λBx:

1. Use Choleski decomposition B = LLT to compute L.
2. Compute L−1 (a triangular matrix can be inverted with relatively small computa-

tional effort).
3. Compute H from Eq. (9.24).
4. Solve the standard eigenvalue problem Hz = λz (e.g., using the Jacobi method).
5. Recover the eigenvectors of the original problem from Eq. (9.22): X = (L−1)T Z.

Note that the eigenvalues were untouched by the transformation.

An important special case is where B is a diagonal matrix:

B =

⎡
⎢⎢⎢⎢⎣

β1 0 · · · 0
0 β2 · · · 0
...

...
. . .

...
0 0 · · · βn

⎤
⎥⎥⎥⎥⎦ (9.25)

Here

L =

⎡
⎢⎢⎢⎢⎣

β
1/2
1 0 · · · 0
0 β

1/2
2 · · · 0

...
...

. . .
...

0 0 · · · β
1/2
n

⎤
⎥⎥⎥⎥⎦ L−1 =

⎡
⎢⎢⎢⎢⎣

β
−1/2
1 0 · · · 0
0 β

−1/2
2 · · · 0

...
...

. . .
...

0 0 · · · β
−1/2
n

⎤
⎥⎥⎥⎥⎦ (9.26a)

and

Hij = Aij√
βiβ j

(9.26b)

� stdForm

Given the matrices A and B, the function stdForm returns H and the transformation
matrix T = (L−1)T . The inversion of L is carried out by invert (the triangular shape
of L allows this to be done by back substitution). Note that the original A, B, and L are
destroyed.

## module stdForm

’’’ h,t = stdForm(a,b).

Transforms the eigenvalue problem [a]{x} = lam[b]{x}

to the standard form [h]{z} = lam{z}. The eigenvectors

are related by {x} = [t]{z}.

’’’

from numpy import dot,inner,transpose

from choleski import *
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330 Symmetric Matrix Eigenvalue Problems

def stdForm(a,b):

def invert(L): # Inverts lower triangular matrix L

n = len(L)

for j in range(n-1):

L[j,j] = 1.0/L[j,j]

for i in range(j+1,n):

L[i,j] = -dot(L[i,j:i],L[j:i,j])/L[i,i]

L[n-1,n-1] = 1.0/L[n-1,n-1]

n = len(a)

L = choleski(b)

invert(L)

h = dot(b,inner(a,L))

return h,transpose(L)

EXAMPLE 9.1

40 MPa

80 MPa
30 MPa

60 MPa

30 MPa

The stress matrix (tensor) corresponding to the state of stress shown is

S =

⎡
⎢⎣80 30 0

30 40 0
0 0 60

⎤
⎥⎦MPa

(each row of the matrix consists of the three stress components acting on a coordi-
nate plane). It can be shown that the eigenvalues of S are the principal stresses and the
eigenvectors are normal to the principal planes. (1) Determine the principal stresses
by diagonalizing S with one Jacobi rotation and (2) compute the eigenvectors.

Solution of Part(1) To eliminate S12 we must apply a rotation in the 1–2 plane. With
k = 1 and � = 2, Eq. (9.15) is

φ = − S11 − S22

2S12
= −80 − 40

2(30)
= −2

3

Equation (9.16a) then yields

t = sgn(φ)

|φ| +
√

φ2 + 1
= −1

2/3 +
√

(2/3)2 + 1
= −0.535 18
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331 9.2 Jacobi Method

According to Eqs. (9.18), the changes in S due to the rotation are

S∗
11 = S11 − t S12 = 80 − (−0.535 18) (30) = 96.055 MPa

S∗
22 = S22 + t S12 = 40 + (−0.535 18) (30) = 23.945 MPa

S∗
12 = S∗

21 = 0

Hence, the diagonalized stress matrix is

S∗ =

⎡
⎢⎣96.055 0 0

0 23.945 0
0 0 60

⎤
⎥⎦

where the diagonal terms are the principal stresses.

Solution of Part (2) To compute the eigenvectors, we start with Eqs. (9.17) and (9.19),
which yield

c = 1√
1 + t 2

= 1√
1 + (−0.535 18)2

= 0.88168

s = tc = (−0.535 18) (0.881 68) = −0.471 86

τ = s
1 + c

= −0.47186
1 + 0.881 68

= −0.250 77

We obtain the changes in the transformation matrix P from Eqs. (9.20). Recalling that
P is initialized to the identity matrix, the first equation gives us

P∗
11 = P11 − s(P12 + τ P11)

= 1 − (−0.471 86) (0 + (−0.250 77) (1)) = 0.881 67

P∗
21 = P21 − s(P22 + τ P21)

= 0 − (−0.471 86) [1 + (−0.250 77) (0)] = 0.471 86

Similarly, the second equation of Eqs. (9.20) yields

P∗
12 = −0.471 86 P∗

22 = 0.881 67

The third row and column of P are not affected by the transformation. Thus,

P∗ =

⎡
⎢⎣0.88167 −0.47186 0

0.47186 0.88167 0
0 0 1

⎤
⎥⎦

The columns of P∗ are the eigenvectors of S.
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332 Symmetric Matrix Eigenvalue Problems

EXAMPLE 9.2

L L 2L

C C3C
i1 i2 i3

i1 i2 i3

(1) Show that the analysis of the electric circuit shown leads to a matrix eigen-
value problem. (2) Determine the circular frequencies and the relative amplitudes of
the currents.

Solution of Part(1) Kirchoff’s equations for the three loops are

L
di1

dt
+ q1 − q2

3C
= 0

L
di2

dt
+ q2 − q1

3C
+ q2 − q3

C
= 0

2L
di3

dt
+ q3 − q2

C
+ q3

C
= 0

Differentiating and substituting dqk/dt = ik , we get

1
3

i1 − 1
3

i2 = −LC
d2i1

dt 2

−1
3

i1 + 4
3

i2 − i3 = −LC
d2i2

dt 2

−i2 + 2i3 = −2LC
d2i3

dt 2

These equations admit the solution

ik (t ) = uk sin ωt

where ω is the circular frequency of oscillation (measured in rad/s) and uk are the
relative amplitudes of the currents. Substitution into Kirchoff’s equations yields Au =
λBu (sin ωt cancels out), where

A =

⎡
⎢⎣ 1/3 −1/3 0

−1/3 4/3 −1
0 −1 2

⎤
⎥⎦ B =

⎡
⎢⎣1 0 0

0 1 0
0 0 2

⎤
⎥⎦ λ = LCω2

which represents an eigenvalue problem of the nonstandard form.
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333 9.2 Jacobi Method

Solution of Part (2) Because B is a diagonal matrix, we can readily transform the
problem into the standard form Hz = λz. From Eq. (9.26a) we get

L−1 =

⎡
⎢⎣1 0 0

0 1 0
0 0 1/

√
2

⎤
⎥⎦

and Eq. (9.26b) yields

H =

⎡
⎢⎣ 1/3 −1/3 0

−1/3 4/3 −1/
√

2
0 −1/

√
2 1

⎤
⎥⎦

The eigenvalues and eigenvectors of H can now be obtained with the Jacobi method.
Skipping the details, the results are

λ1 = 0.147 79 λ2 = 0.582 35 λ3 = 1.936 53

z1 =

⎡
⎢⎣0.810 27

0.451 02
0.374 23

⎤
⎥⎦ z2 =

⎡
⎢⎣ 0.562 74

−0.420 40
−0.711 76

⎤
⎥⎦ z3 =

⎡
⎢⎣ 0.163 70

−0.787 30
0.594 44

⎤
⎥⎦

The eigenvectors of the original problem are recovered from Eq. (9.22): yi= (L−1)T zi ,
which yields

u1 =

⎡
⎢⎣0.810 27

0.451 02
0.264 62

⎤
⎥⎦ u2 =

⎡
⎢⎣ 0.562 74

−0.420 40
−0.503 29

⎤
⎥⎦ u3 =

⎡
⎢⎣ 0.163 70

−0.787 30
0.420 33

⎤
⎥⎦

These vectors should now be normalized (each zi was normalized, but the transfor-
mation to ui does not preserve the magnitudes of vectors). The circular frequencies
are ωi = √λi/ (LC), so that

ω1 = 0.3844√
LC

ω2 = 0.7631√
LC

ω3 = 1.3916√
LC

EXAMPLE 9.3

n+1 2
P

0-1
n

nn
+

-
1

21

L
x

The propped cantilever beam carries a compressive axial load P. The lateral dis-
placement u(x) of the beam can be shown to satisfy the differential equation

u(4) + P
E I

u′′ = 0 (a)

where E I is the bending rigidity. The boundary conditions are

u(0) = u′′(0) = 0 u(L) = u′(L) = 0 (b)
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334 Symmetric Matrix Eigenvalue Problems

(1) Show that buckling analysis of the beam results in a matrix eigenvalue problem if
the derivatives are approximated by finite differences. (2) Use the Jacobi method to
compute the lowest three buckling loads and the corresponding eigenvectors.

Solution of Part (1) We divide the beam into n + 1 segments of length L/(n + 1) each
as shown. Replacing the derivatives of u in Eq. (a) by central finite differences of O(h2)
at the interior nodes (nodes 1 to n), we obtain

ui−2 − 4ui−1 + 6ui − 4ui+1 + ui+2

h4

= P
E I

−ui−1 + 2ui − ui−1

h2
, i = 1, 2, . . . , n

After multiplication by h4, the equations become

u−1 − 4u0 + 6u1 − 4u2 + u3 = λ(−u0 + 2u1 − u2)

u0 − 4u1 + 6u2 − 4u3 + u4 = λ(−u1 + 2u2 − u3)

... (c)

un−3 − 4un−2 + 6un−1 − 4un + un+1 = λ(−un−2 + 2un−1 − un)

un−2 − 4un−1 + 6un − 4un+1 + un+2 = λ(−un−1 + 2un − un+1)

where

λ = Ph2

E I
= P L2

(n + 1)2 E I

The displacements u−1, u0, un+1, and un+2 can be eliminated by using the prescribed
boundary conditions. Referring to Table 8.1, the finite difference approximations to
the boundary conditions are

u0 = 0 u−1 = −u1 un+1 = 0 un+2 = un

Substitution into Eqs. (c) yields the matrix eigenvalue problem Ax = λBx, where

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5 −4 1 0 0 · · · 0
−4 6 −4 1 0 · · · 0

1 −4 6 −4 1 · · · 0
...

. . .
. . .

. . .
. . .

. . .
...

0 · · · 1 −4 6 −4 1
0 · · · 0 1 −4 6 −4
0 · · · 0 0 1 −4 7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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335 9.2 Jacobi Method

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0 0 0 · · · 0
−1 2 −1 0 0 · · · 0

0 −1 2 −1 0 · · · 0
...

. . .
...

. . .
. . .

. . .
. . .

...
0 · · · 0 −1 2 −1 0
0 · · · 0 0 −1 2 −1
0 · · · 0 0 0 −1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Solution of Part (2) The problem with the Jacobi method is that it insists on finding
all the eigenvalues and eigenvectors. It is also incapable of exploiting banded struc-
tures of matrices. Thus, the program listed below does much more work than neces-
sary for the problem at hand. More efficient methods of solution will be introduced
later in this chapter.

#!/usr/bin/python

## example9_3

from numpy import array,zeros,dot

from stdForm import *

from jacobi import *

from sortJacobi import *

n = 10

a = zeros((n,n))

b = zeros((n,n))

for i in range(n):

a[i,i] = 6.0

b[i,i] = 2.0

a[0,0] = 5.0

a[n-1,n-1] = 7.0

for i in range(n-1):

a[i,i+1] = -4.0

a[i+1,i] = -4.0

b[i,i+1] = -1.0

b[i+1,i] = -1.0

for i in range(n-2):

a[i,i+2] = 1.0

a[i+2,i] = 1.0

h,t = stdForm(a,b) # Convert to std. form

lam,z = jacobi(h) # Solve by Jacobi mthd.

x = dot(t,z) # Eigenvectors of orig. prob. [x] = [t][z]

for i in range(n): # Normalize eigenvectors

xMag = sqrt(dot(x[:,i],x[:,i]))

x[:,i] = x[:,i]/xMag
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336 Symmetric Matrix Eigenvalue Problems

sortJacobi(lam,x) # Arrange in ascending order

print "Eigenvalues:\n",lam[0:3]

print "\nEigenvectors:\n",x[:,0:3]

raw_input("\n Press return to exit")

Running the program with n = 10 resulted in the following output:

Eigenvalues:

[ 0.16410379 0.47195675 0.90220118]

Eigenvectors:

[[ 0.16410119 -0.18476623 0.30699491]

[ 0.30618978 -0.26819121 0.36404289]

[ 0.40786549 -0.19676237 0.14669942]

[ 0.45735999 0.00994855 -0.12192373]

[ 0.45146805 0.26852252 -0.1724502 ]

[ 0.39607358 0.4710634 0.06772929]

[ 0.30518404 0.53612023 0.40894875]

[ 0.19863178 0.44712859 0.57038382]

[ 0.09881943 0.26022826 0.43341183]

[ 0.0270436 0.07776771 0.1486333 ]]

The first three mode shapes, which represent the relative displacements of the
bucked beam, are plotted here (we appended the zero end displacements to the
eigenvectors before plotting the points).

0.0 2.0 4.0 6.0 8.0 10.0
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337 9.3 Power and Inverse Power Methods

The buckling loads are given by Pi = (n + 1)2 λi E I/L2. Thus,

P1 = (11)2 (0.164 103 7) E I
L2

= 19.857
E I
L2

P2 = (11)2 (0.471 956 75) E I
L2

= 57.107
E I
L2

P3 = (11)2 (0.902 201 18) E I
L2

= 109.17
E I
L2

The analytical values are P1 = 20.19E I/L2, P2 = 59.68E I/L2, and P3 = 118.9E I/L2.
It can be seen that the error introduced by the finite difference approximation in-
creases with the mode number (the error in Pi+1 is larger than in Pi ). Of course, the
accuracy of the finite difference model can be improved by using larger n, but beyond
n = 20 the cost of computation with the Jacobi method becomes rather high.

9.3 Power and Inverse Power Methods

Inverse Power Method

The inverse power method is a simple and efficient algorithm that finds the smallest
eigenvalue λ1 and the corresponding eigenvector x1 of

Ax = λx (9.27)

The method works like this:

1. Let v be an approximation to x1 (a random vector of unit magnitude will do).
2. Solve

Az = v (9.28)

for the vector z.
3. Compute |z|.
4. Let v = z/|z| and repeat steps 2–4 until the change in v is negligible.

At the conclusion of the procedure, |z| = ±1/λ1 and v = x1. The sign of λ1 is de-
termined as follows: If z changes sign between successive iterations, λ1 is negative;
otherwise, use the plus sign.

Let us now investigate why the method works. Because the eigenvectors xi of Eq.
(9.27) are orthonormal (linearly independent), they can be used as the basis for any
n-dimensional vector. Thus, v and z admit the unique representations

v =
n∑

i=1

vi xi z =
n∑

i=1

zi xi (a)
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338 Symmetric Matrix Eigenvalue Problems

where vi and zi are the components of v and z with respect to the eigenvectors xi .
Substitution into Eq. (9.28) yields

A
n∑

i=1

zi xi −
n∑

i=1

vi xi = 0

But Axi = λi xi , so that

n∑
i=1

(ziλi − vi ) xi = 0

Hence,

zi = vi

λi

It follows from Eq. (a) that

z =
n∑

i=1

vi

λi
xi = 1

λ1

n∑
i=1

vi
λ1

λi
xi (9.29)

= 1
λ1

(
v1x1 + v2

λ1

λ2
x2 + v3

λ1

λ3
x3 + · · ·

)

Because λ1/λi < 1 (i �= 1), we observe that the coefficient of x1 has become more
prominent in z than it was in v; hence, z is a better approximation to x1. This com-
pletes the first iterative cycle.

In subsequent cycles, we set v = z/|z| and repeat the process. Each iteration will
increase the dominance of the first term in Eq. (9.29) so that the process converges to

z = 1
λ1

v1x1 = 1
λ1

x1

(at this stage v1 = 1 because v = x1, so that v1 = 1, v2 = v3 = · · · = 0).
The inverse power method also works with the nonstandard eigenvalue problem

Ax = λBx (9.30)

provided that Eq. (9.28) is replaced by

Az = Bv (9.31)

The alternative is, of course, to transform the problem to standard form before ap-
plying the power method.

Eigenvalue Shifting

By inspection of Eq. (9.29) we see that the speed of convergence is determined by
the strength of the inequality|λ1/λ2| < 1 (the second term in the equation). If |λ2|
is well separated from |λ1|, the inequality is strong and the convergence is rapid.
On the other hand, close proximity of these two eigenvalues results in very slow
convergence.
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339 9.3 Power and Inverse Power Methods

The rate of convergence can be improved by a technique called eigenvalue shift-
ing. Letting

λ = λ∗ + s (9.32)

where s is a predetermined “shift,” the eigenvalue problem in Eq. (9.27) is trans-
formed to

Ax = (λ∗ + s)x

or

A∗x = λ∗x (9.33)

where

A∗ = A − sI (9.34)

Solving the transformed problem in Eq. (9.33) by the inverse power method yields λ∗
1

and x1, where λ∗
1 is the smallest eigenvalue of A∗. The corresponding eigenvalue of

the original problem, λ = λ∗
1 + s , is thus the eigenvalue closest to s .

Eigenvalue shifting has two applications. An obvious one is the determination
of the eigenvalue closest to a certain value s . For example, if the working speed of a
shaft is s rpm, it is imperative to ensure that there are no natural frequencies (which
are related to the eigenvalues) close to that speed.

Eigenvalue shifting is also used to speed up convergence. Suppose that we are
computing the smallest eigenvalue λ1 of the matrix A. The idea is to introduce a shift
s that makes λ∗

1/λ
∗
2 as small as possible. Because λ∗

1 = λ1 − s , we should choose s ≈ λ1

(s = λ1 should be avoided to prevent division by zero). Of course, this method works
only if we have a prior estimate of λ1.

The inverse power method with eigenvalue shifting is a particularly powerful tool
for finding eigenvectors if the eigenvalues are known. By shifting very close to an
eigenvalue, the corresponding eigenvector can be computed in one or two iterations.

Power Method

The power method converges to the eigenvalue furthest from zero and the associated
eigenvector. It is very similar to the inverse power method; the only difference be-
tween the two methods is the interchange of v and z in Eq. (9.28). The outline of the
procedure is:

1. Let v be an approximation to x1 (a random vector of unit magnitude will do).
2. Compute the vector

z = Av (9.35)

3. Compute |z|.
4. Let v = z/|z| and repeat steps 2–4 until the change in v is negligible.

At the conclusion of the procedure, |z| = ±λn and v = xn (the sign of λn is deter-
mined in the same way as in the inverse power method).
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340 Symmetric Matrix Eigenvalue Problems

� inversePower

Given the matrix A and the shift s , the function inversePower returns the eigenvalue
of A closest to s and the corresponding eigenvector. The matrix A∗ = A − sI is decom-
posed as soon as it is formed, so that only the solution phase (forward and back sub-
stitution) is needed in the iterative loop. If A is banded, the efficiency of the program
could be improved by replacing LUdecomp and LUsolve by functions that specialize
in banded matrices (e.g., LUdecomp5 and LUsolve5) – see Example 9.6. The program
line that forms A∗ must also be modified to be compatible with the storage scheme
used for A.

## module inversePower

’’’ lam,x = inversePower(a,s,tol=1.0e-6).

Inverse power method for solving the eigenvalue problem

[a]{x} = lam{x}. Returns ’lam’ closest to ’s’ and the

corresponding eigenvector {x}.

’’’

from numpy import zeros,dot,identity

from LUdecomp import *

from math import sqrt

from random import random

def inversePower(a,s,tol=1.0e-6):

n = len(a)

aStar = a - identity(n)*s # Form [a*] = [a] - s[I]

aStar = LUdecomp(aStar) # Decompose [a*]

x = zeros(n)

for i in range(n): # Seed [x] with random numbers

x[i] = random()

xMag = sqrt(dot(x,x)) # Normalize [x]

x =x/xMag

for i in range(50): # Begin iterations

xOld = x.copy() # Save current [x]

x = LUsolve(aStar,x) # Solve [a*][x] = [xOld]

xMag = sqrt(dot(x,x)) # Normalize [x]

x = x/xMag

if dot(xOld,x) < 0.0: # Detect change in sign of [x]

sign = -1.0

x = -x

else: sign = 1.0

if sqrt(dot(xOld - x,xOld - x)) < tol:

return s + sign/xMag,x

print ’Inverse power method did not converge’
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341 9.3 Power and Inverse Power Methods

EXAMPLE 9.4
The stress matrix describing the state of stress at a point is

S =

⎡
⎢⎣−30 10 20

10 40 −50
20 −50 −10

⎤
⎥⎦MPa

Determine the largest principal stress (the eigenvalue of S furthest from zero) by the
power method.

Solution

First iteration:
Let v =

[
1 0 0

]T
be the initial guess for the eigenvector. Then,

z = Sv =

⎡
⎢⎣−30 10 20

10 40 −50
20 −50 −10

⎤
⎥⎦
⎡
⎢⎣1

0
0

⎤
⎥⎦ =

⎡
⎢⎣−30.0

10.0
20.0

⎤
⎥⎦

|z| =
√

302 + 102 + 202 = 37.417

v = z
|z| =

⎡
⎢⎣−30.0

10.0
20.0

⎤
⎥⎦ 1

37.417
=

⎡
⎢⎣−0.801 77

0.267 26
0.534 52

⎤
⎥⎦

Second iteration:

z = Sv =

⎡
⎢⎣−30 10 20

10 40 −50
20 −50 −10

⎤
⎥⎦
⎡
⎢⎣−0.801 77

0.267 26
0.534 52

⎤
⎥⎦ =

⎡
⎢⎣ 37.416

−24.053
−34.744

⎤
⎥⎦

|z| =
√

37.4162 + 24.0532 + 34.7442 = 56. 442

v = z
|z| =

⎡
⎢⎣ 37.416

−24.053
−34.744

⎤
⎥⎦ 1

56. 442
=

⎡
⎢⎣ 0.66291

−0.42615
−0.61557

⎤
⎥⎦

Third iteration:

z = Sv =

⎡
⎢⎣−30 10 20

10 40 −50
20 −50 −10

⎤
⎥⎦
⎡
⎢⎣ 0.66291

−0.42615
−0.61557

⎤
⎥⎦ =

⎡
⎢⎣−36.460

20.362
40.721

⎤
⎥⎦

|z| =
√

36.4602 + 20.3622 + 40.7212 = 58.328

v = z
|z| =

⎡
⎢⎣−36.460

20.362
40.721

⎤
⎥⎦ 1

58.328
=

⎡
⎢⎣−0.62509

0.34909
0.69814

⎤
⎥⎦
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342 Symmetric Matrix Eigenvalue Problems

At this point the approximation of the eigenvalue we seek is λ = −58.328 MPa (the
negative sign is determined by the sign reversal of z between iterations). This is actu-
ally close to the second-largest eigenvalue λ2 = −58.39 MPa. By continuing the itera-
tive process we would eventually end up with the largest eigenvalue λ3 = 70.94 MPa.
But since |λ2| and |λ3| are rather close, the convergence is too slow from this point on
for manual labor. Here is a program that does the calculations for us:

#!/usr/bin/python

## example9_4

from numpy import array,dot

from math import sqrt

s = array([[-30.0, 10.0, 20.0], \

[ 10.0, 40.0, -50.0], \

[ 20.0, -50.0, -10.0]])

v = array([1.0, 0.0, 0.0])

for i in range(100):

vOld = v.copy()

z = dot(s,v)

zMag = sqrt(dot(z,z))

v = z/zMag

if dot(vOld,v) < 0.0:

sign = -1.0

v = -v

else: sign = 1.0

if sqrt(dot(vOld - v,vOld - v)) < 1.0e-6: break

lam = sign*zMag

print "Number of iterations =",i

print "Eigenvalue =",lam

raw_input("Press return to exit")

The results are:

Number of iterations = 92

Eigenvalue = 70.9434833068

Note that it took 92 iterations to reach convergence.

EXAMPLE 9.5
Determine the smallest eigenvalue λ1 and the corresponding eigenvector of

A =

⎡
⎢⎢⎢⎢⎢⎣

11 2 3 1 4
2 9 3 5 2
3 3 15 4 3
1 5 4 12 4
4 2 3 4 17

⎤
⎥⎥⎥⎥⎥⎦

Use the inverse power method with eigenvalue shifting, knowing that λ1 ≈ 5.
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343 9.3 Power and Inverse Power Methods

Solution

#!/usr/bin/python

## example9_5

from numpy import array

from inversePower import *

s = 5.0

a = array([[ 11.0, 2.0, 3.0, 1.0, 4.0], \

[ 2.0, 9.0, 3.0, 5.0, 2.0], \

[ 3.0, 3.0, 15.0, 4.0, 3.0], \

[ 1.0, 5.0, 4.0, 12.0, 4.0], \

[ 4.0, 2.0, 3.0, 4.0, 17.0]])

lam,x = inversePower(a,s)

print "Eigenvalue =",lam

print "\nEigenvector:\n",x

raw_input("\nPrint press return to exit")

Here is the output:

Eigenvalue = 4.87394637865

Eigenvector:

[-0.26726603 0.74142854 0.05017271 -0.59491453 0.14970633]

Convergence was achieved with four iterations. Without the eigenvalue shift, 26
iterations would be required.

EXAMPLE 9.6
Unlike Jacobi diagonalization, the inverse power method lends itself to eigenvalue
problems of banded matrices. Write a program that computes the smallest buckling
load of the beam described in Example 9.3, making full use of the banded forms. Run
the program with 100 interior nodes (n = 100).

Solution The function inversePower5 listed here returns the smallest eigenvalue
and the corresponding eigenvector of Ax = λBx, where A is a pentadiagonal ma-
trix and B is a sparse matrix (in this problem it is tridiagonal). The matrix A is in-
put by its diagonals d, e, and f as was done in Section 2.4 in conjunction with the
LU decomposition. The algorithm for inversePower5 does not use B directly, but
calls the function Bv(v) that supplies the product Bv. Eigenvalue shifting is not
used.

## module inversePower5

’’’ lam,x = inversePower5(Bv,d,e,f,tol=1.0e-6).

Inverse power method for solving the eigenvalue problem

[A]{x} = lam[B]{x}, where [A] = [f\e\d\e\f] is

pentadiagonal and [B] is sparse.. User must supply the
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344 Symmetric Matrix Eigenvalue Problems

function Bv(v) that returns the vector [B]{v}.

’’’

from numpy import zeros,dot

from LUdecomp5 import *

from math import sqrt

from random import random

def inversePower5(Bv,d,e,f,tol=1.0e-6):

n = len(d)

d,e,f = LUdecomp5(d,e,f)

x = zeros(n)

for i in range(n): # Seed {v} with random numbers

x[i] = random()

xMag = sqrt(dot(x,x)) # Normalize {v}

x = x/xMag

for i in range(30): # Begin iterations

xOld = x.copy() # Save current {v}

x = Bv(xOld) # Compute [B]{v}

x = LUsolve5(d,e,f,x) # Solve [A]{z} = [B]{v}

xMag = sqrt(dot(x,x)) # Normalize {z}

x = x/xMag

if dot(xOld,x) < 0.0: # Detect change in sign of {x}

sign = -1.0

x = -x

else: sign = 1.0

if sqrt(dot(xOld - x,xOld - x)) < tol:

return sign/xMag,x

print ’Inverse power method did not converge’

The program that utilizes inversePower5 is

#!/usr/bin/python

## example9_6

from numpy import ones,zeros

from inversePower5 import *

def Bv(v): # Compute {z} = [B]{v}

n = len(v)

z = zeros(n)

z[0] = 2.0*v[0] - v[1]

for i in range(1,n-1):

z[i] = -v[i-1] + 2.0*v[i] - v[i+1]

z[n-1] = -v[n-2] + 2.0*v[n-1]

return z
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345 9.3 Power and Inverse Power Methods

n = 100 # Number of interior nodes

d = ones(n*6.0 # Specify diagonals of [A] = [f\e\d\e\f]

d[0] = 5.0

d[n-1] = 7.0

e = ones(n-1)*(-4.0)

f = ones(n-2)*1.0

lam,x = inversePower5(Bv,d,e,f)

print "PLˆ2/EI =",lam*(n+1)**2

raw_input("\nPress return to exit")

The output is in excellent agreement with the analytical value:

PLˆ2/EI = 20.1867355603

PROBLEM SET 9.1

1. Given

A =

⎡
⎢⎣7 3 1

3 9 6
1 6 8

⎤
⎥⎦ B =

⎡
⎢⎣4 0 0

0 9 0
0 0 4

⎤
⎥⎦

convert the eigenvalue problem Ax = λBx to the standard form Hz = λz. What is
the relationship between x and z?

2. Convert the eigenvalue problem Ax = λBx, where

A =

⎡
⎢⎣ 4 −1 0

−1 4 −1
0 −1 4

⎤
⎥⎦ B =

⎡
⎢⎣ 2 −1 0

−1 2 −1
0 −1 1

⎤
⎥⎦

to the standard form.
3. An eigenvalue of the problem in Prob. 2 is roughly 2.5. Use the inverse power

method with eigenvalue shifting to compute this eigenvalue to four decimal

places. Start with x =
[

1 0 0
]T

. Hint: two iterations should be sufficient.
4. The stress matrix at a point is

S =

⎡
⎢⎣ 150 −60 0

−60 120 0
0 0 80

⎤
⎥⎦MPa

Compute the principal stresses (eigenvalues of S).
5.

mm

L L

k

θθ1 2

2
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The two pendulums are connected by a spring that is undeformed when the pen-
dulums are vertical. The equations of motion of the system can be shown to be

k L(θ2 − θ1) − mgθ1 = mL θ̈1

−k L(θ2 − θ1) − 2mgθ2 = 2mL θ̈2

where θ1 and θ2 are the angular displacements and k is the spring stiffness.
Determine the circular frequencies of vibration and the relative amplitudes of
the angular displacements. Use m = 0.25 kg, k = 20 N/m, L = 0.75 m, and g =
9.80665 m/s2.

6.
L L

L

C

C

C

i1 i2

i3i1

i2

i3

Kirchoff’s laws for the electric circuit are

3i1 − i2 − i3 = −LC
d2i1

dt 2

−i1 + i2 = −LC
d2i2

dt 2

−i1 + i3 = −LC
d2i3

dt 2

Compute the circular frequencies of the circuit and the relative amplitudes of the
loop currents.

7. Compute the matrix A∗ that results from annihilation A 14 and A 41 in the matrix

A =

⎡
⎢⎢⎢⎣

4 −1 0 1
−1 6 −2 0

0 −2 3 2
1 0 2 4

⎤
⎥⎥⎥⎦

by a Jacobi rotation.
8. � Use the Jacobi method to determine the eigenvalues and eigenvectors of

A =

⎡
⎢⎣ 4 −1 2

−1 3 3
−2 3 1

⎤
⎥⎦
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347 9.3 Power and Inverse Power Methods

9. � Find the eigenvalues and eigenvectors of

A =

⎡
⎢⎢⎢⎣

4 −2 1 −1
−2 4 −2 1

1 −2 4 −2
−1 1 −2 4

⎤
⎥⎥⎥⎦

with the Jacobi method.
10. � Use the power method to compute the largest eigenvalue and the correspond-

ing eigenvector of the matrix A given in Prob. 9.
11. � Find the smallest eigenvalue and the corresponding eigenvector of the matrix

A in Prob. 9. Use the inverse power method.
12. � Let

A =

⎡
⎢⎣1.4 0.8 0.4

0.8 6.6 0.8
0.4 0.8 5.0

⎤
⎥⎦ B =

⎡
⎢⎣ 0.4 −0.1 0.0

−0.1 0.4 −0.1
0.0 −0.1 0.4

⎤
⎥⎦

Find the eigenvalues and eigenvectors of Ax = λBx by the Jacobi method.
13. � Use the inverse power method to compute the smallest eigenvalue in Prob. 12.
14. � Use the Jacobi method to compute the eigenvalues and eigenvectors of the

matrix

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

11 2 3 1 4 2
2 9 3 5 2 1
3 3 15 4 3 2
1 5 4 12 4 3
4 2 3 4 17 5
2 1 2 3 5 8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

15. � Find the eigenvalues of Ax = λBx by the Jacobi method, where

A =

⎡
⎢⎢⎢⎣

6 −4 1 0
−4 6 −4 1

1 −4 6 −4
0 1 −4 7

⎤
⎥⎥⎥⎦ B =

⎡
⎢⎢⎢⎣

1 −2 3 −1
−2 6 −2 3

3 −2 6 −2
−1 3 −2 9

⎤
⎥⎥⎥⎦

Warning: B is not positive definite.
16. �

1 n2

L x

u

The figure shows a cantilever beam with a superimposed finite difference mesh.
If u(x, t ) is the lateral displacement of the beam, the differential equation of mo-
tion governing bending vibrations is

u(4) = − γ

E I
ü
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348 Symmetric Matrix Eigenvalue Problems

where γ is the mass per unit length and E I is the bending rigidity. The bound-
ary conditions are u(0, t ) = u′(0, t ) = u′′(L , t ) = u′′′(L , t ) = 0. With u(x, t ) = y(x)
sin ωt the problem becomes

y (4) = ω2γ

E I
y y(0) = y ′(0) = y ′′(L) = y ′′′(L) = 0

The corresponding finite difference equations are

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

7 −4 1 0 0 · · · 0
−4 6 −4 1 0 · · · 0

1 −4 6 −4 1 · · · 0
...

. . .
. . .

. . .
. . .

. . .
...

0 · · · 1 −4 6 −4 1
0 · · · 0 1 −4 5 −2
0 · · · 0 0 1 −2 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1

y2

y3

...
yn−2

yn−1

yn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= λ

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1

y2

y3

...
yn−2

yn−1

yn/2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where

λ = ω2γ

E I

(
L
n

)4

(a) Write down the matrix H of the standard form Hz = λz and the transforma-
tion matrix P as in y = Pz. (b) Write a program that computes the lowest two
circular frequencies of the beam and the corresponding mode shapes (eigenvec-
tors) using the Jacobi method. Run the program with n = 10. Note: the analytical
solution for the lowest circular frequency is ω1 = (3.515/L2

)√
E I/γ .

17. �

1 20 3 4 5 6 7 8 9 10

L L/4 /4

(b)

PP LL L

EI EI2

/2 /4/4

00 EI0

(a)

The simply supported column in Fig. (a) consists of three segments with the
bending rigidities shown. If only the first buckling mode is of interest, it is suf-
ficient to model half of the beam as shown in Fig. (b). The differential equation
for the lateral displacement u(x) is

u′′ = − P
E I

u
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349 9.3 Power and Inverse Power Methods

with the boundary conditions u(0) = u′(0) = 0. The corresponding finite differ-
ence equations are⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0 0 0 0 0 · · · 0
−1 2 −1 0 0 0 0 · · · 0

0 −1 2 −1 0 0 0 · · · 0
0 0 −1 2 −1 0 0 · · · 0
0 0 0 −1 2 −1 0 · · · 0
0 0 0 0 −1 2 −1 · · · 0
...

...
...

...
...

. . .
. . .

. . .
...

0 · · · 0 0 0 0 −1 2 −1
0 · · · 0 0 0 0 0 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1

u2

u3

u4

u5

u6

...
u9

u10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= λ

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1

u2

u3

u4

u5/1.5
u6/2

...
u9/2
u10/4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where

λ = P
E I0

(
L

20

)2

Write a program that computes the lowest buckling load P of the column with
the inverse power method. Utilize the banded forms of the matrices.

18. �

θ3

θ2θ1

L
L

L

k k
k

P

The springs supporting the three-bar linkage are undeformed when the linkage
is horizontal. The equilibrium equations of the linkage in the presence of the
horizontal force P can be shown to be⎡

⎢⎣6 5 3
3 3 2
1 1 1

⎤
⎥⎦
⎡
⎢⎣ θ1

θ2

θ3

⎤
⎥⎦ = P

k L

⎡
⎢⎣1 1 1

0 1 1
0 0 1

⎤
⎥⎦
⎡
⎢⎣ θ1

θ2

θ3

⎤
⎥⎦

where k is the spring stiffness. Determine the smallest buckling load P and the
corresponding mode shape. Hint: The equations can easily rewritten in the stan-
dard form Aθ = λθ , where A is symmetric.

19. �

m 2m3m
kk k k

u u u1 2 3

The differential equations of motion for the mass-spring system are

k (−2u1 + u2) = mü1

k(u1 − 2u2 + u3) = 3mü2

k(u2 − 2u3) = 2mü3
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350 Symmetric Matrix Eigenvalue Problems

where ui (t ) is the displacement of mass i from its equilibrium position and k is
the spring stiffness. Determine the circular frequencies of vibration and the cor-
responding mode shapes.

20. �
L L L L

C C/5C/2 C/3 C/4i1 i2 i3 i4
i1 i2 i3 i4

Kirchoff’s equations for the circuit are

L
d2i1

dt 2
+ 1

C
i1 + 2

C
(i1 − i2) = 0

L
d2i2

dt 2
+ 2

C
(i2 − i1) + 3

C
(i2 − i3) = 0

L
d2i3

dt 2
+ 3

C
(i3 − i2) + 4

C
(i3 − i4) = 0

L
d2i4

dt 2
+ 4

C
(i4 − i3) + 5

C
i4 = 0

Find the circular frequencies of the current.
21. �

L L L L

C C/2 C/3 C/4

i1 i2 i3 i4
i1 i2 i3 i4

L

Determine the circular frequencies of oscillation for the circuit shown, given the
Kirchoff equations

L
d2i1

dt 2
+ L

(
d2i1

dt 2
− d2i2

dt 2

)
+ 1

C
i1 = 0

L
(

d2i2

dt 2
− d2i1

dt 2

)
+ L

(
d2i2

dt 2
− d2i3

dt 2

)
+ 2

C
= 0

L
(

d2i3

dt 2
− d2i2

dt 2

)
+ L

(
d2i3

dt 2
− d2i4

dt 2

)
+ 3

C
i3 = 0

L
(

d2i4

dt 2
− d2i3

dt 2

)
+ L

d2i4

dt 2
+ 4

C
i4 = 0

22. � Several iterative methods exist for finding the eigenvalues of a matrix A. One of
these is the LR method, which requires the matrix to be symmetric and positive
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351 9.4 Householder Reduction to Tridiagonal Form

definite. Its algorithm is very simple:

Let A0 = A
do with i = 0, 1, 2, . . .

Use Choleski’s decomposition Ai= Li LT
i to compute Li

Form Ai+1 = LT
i Li

end do

It can be shown that the diagonal elements of Ai+1 converge to the eigenvalues
of A. Write a program that implements the LR method and test it with

A =

⎡
⎢⎣4 3 1

3 4 2
1 2 3

⎤
⎥⎦

9.4 Householder Reduction to Tridiagonal Form

It was mentioned before that similarity transformations can be used to transform an
eigenvalue problem to a form that is easier to solve. The most desirable of the “easy”
forms is, of course, the diagonal form that results from the Jacobi method. However,
the Jacobi method requires about 10n3 to 20n3 multiplications, so that the amount of
computation increases very rapidly with n. We are generally better off by reducing the
matrix to the tridiagonal form, which can be done in precisely n − 2 transformations
by the Householder method. Once the tridiagonal form is achieved, we still have to
extract the eigenvalues and the eigenvectors, but there are effective means of dealing
with that, as we see in the next section.

Householder Matrix

Each Householder transformation utilizes the Householder matrix

Q = I − uuT

H
(9.36)

where u is a vector and

H = 1
2

uT u = 1
2

|u|2 (9.37)

Note that uuT in Eq. (9.36) is the outer product, that is, a matrix with the elements(
uuT

)
ij = uiuj . Because Q is obviously symmetric (QT = Q), we can write

QT Q = QQ =
(

I − uuT

H

)(
I − uuT

H

)
= I − 2

uuT

H
+ u

(
uT u

)
uT

H2

= I − 2
uuT

H
+ u (2H) uT

H2
= I

which shows that Q is also orthogonal.
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352 Symmetric Matrix Eigenvalue Problems

Now let x be an arbitrary vector and consider the transformation Qx. Choosing

u = x + ke1 (9.38)

where

k = ± |x| e1 =
[

1 0 0 · · · 0
]T

we get

Qx =
(

I − uuT

H

)
x =

[
I − u

(
x + ke1

)T

H

]
x

= x − u
(
xT x+keT

1 x
)

H
= x − u

(
k2 + kx1

)
H

But

2H = (
x + ke1

)T (x + ke1
) = |x|2 + k

(
xT e1+eT

1 x
)+ k2eT

1 e1

= k2 + 2kx1 + k2 = 2
(
k2 + kx1

)
so that

Qx = x − u = −ke1 =
[
−k 0 0 · · · 0

]T
(9.39)

Hence, the transformation eliminates all elements of x except the first one.

Householder Reduction of a Symmetric Matrix

Let us now apply the following transformation to a symmetric n × n matrix A:

P1A =
[

1 0T

0 Q

][
A 11 xT

x A′

]
=
[

A 11 xT

Qx QA′

]
(9.40)

Here x represents the first column of A with the first element omitted, and A′ is sim-
ply A with its first row and column removed. The matrix Q of dimensions (n − 1) ×
(n − 1) is constructed using Eqs. (9.36)–(9.38). Referring to Eq. (9.39), we see that the
transformation reduces the first column of A to

[
A 11

Qx

]
=

⎡
⎢⎢⎢⎢⎢⎢⎣

A 11

−k
0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎦

The transformation

A ← P1AP1 =
[

A 11
(
Qx
)T

Qx QA′Q

]
(9.41)
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353 9.4 Householder Reduction to Tridiagonal Form

thus tridiagonalizes the first row as well as the first column of A. Here is a diagram of
the transformation for a 4 × 4 matrix:

1 0 0 0

0
0 Q
0

·
A 11 A 12 A 13 A 14

A 21

A 31 A′

A 41

·
1 0 0 0

0
0 Q
0

=
A 11 −k 0 0

−k
0 QA′Q
0

The second row and column of A are reduced next by applying the transformation to
the 3 × 3 lower right portion of the matrix. This transformation can be expressed as
A ← P2AP2, where now

P2 =
[

I2 0T

0 Q

]
(9.42)

In Eq. (9.42), I2 is a 2 × 2 identity matrix and Q is a (n − 2) × (n − 2) matrix con-
structed by choosing for x the bottom n − 2 elements of the second column of A.
It takes a total of n − 2 transformations with

Pi =
[

Ii 0T

0 Q

]
, i = 1, 2, . . . , n − 2

to attain the tridiagonal form.
It is wasteful to form Pi and to carry out the matrix multiplication Pi APi . We note

that

A′Q = A′
(

I − uuT

H

)
= A′ − A′u

H
uT = A′−vuT

where

v = A′u
H

(9.43)

Therefore,

QA′Q =
(

I − uuT

H

) (
A′−vuT ) = A′−vuT − uuT

H

(
A′−vuT )

= A′−vuT − u
(
uT A′)
H

+ u
(
uT v

)
uT

H

= A′−vuT−uvT + 2guuT

where

g = uT v
2H

(9.44)
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354 Symmetric Matrix Eigenvalue Problems

Letting

w = v − gu (9.45)

it can be easily verified that the transformation can be written as

QA′Q = A′−wuT −uwT (9.46)

which gives us the following computational procedure that is to be carried out with
i = 1, 2, . . . , n − 2:

1. Let A′ be the (n − i) × (n − i
)

lower right-hand portion of A.

2. Let x =
[

Ai+1,i Ai+2,i · · · An,i

]T
(the column of length n − i just left of A′).

3. Compute |x|. Let k = |x| if x1 > 0 and k = − |x| if x1 < 0 (this choice of sign mini-
mizes the roundoff error).

4. Let u =
[

k+x1 x2 x3 · · · xn−i

]T
.

5. Compute H = |u| /2.
6. Compute v = A′u/H.
7. Compute g = uT v/(2H).
8. Compute w = v − gu.
9. Compute the transformation A′← A′−wT u − uT w.

10. Set Ai,i+1 = Ai+1,i = −k.

Accumulated Transformation Matrix

Because we used similarity transformations, the eigenvalues of the tridiagonal matrix
are the same as those of the original matrix. However, to determine the eigenvectors
X of original A, we must use the transformation

X = PXtridiag

where P is the accumulation of the individual transformations:

P = P1P2· · · Pn−2

We build up the accumulated transformation matrix by initializing P to an n × n iden-
tity matrix and then applying the transformation

P ← PPi =
[

P11 P12

P21 P22

][
Ii 0T

0 Q

]
=
[

P11 P21Q
P12 P22Q

]
(b)

with i = 1, 2, . . . , n − 2. It can be seen that each multiplication affects only the right-
most n − i columns of P (because the first row of P12 contains only zeroes, it can also
be omitted in the multiplication). Using the notation

P′=
[

P12

P22

]
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355 9.4 Householder Reduction to Tridiagonal Form

we have [
P12Q
P22Q

]
= P′Q = P′

(
I − uuT

H

)
= P′ − P′u

H
uT = P′−yuT (9.47)

where

y = P′u
H

(9.48)

The procedure for carrying out the matrix multiplication in Eq. (b) is:

• Retrieve u (in our triangularization procedure the u’s are stored in the columns
of the lower triangular portion of A).

• Compute H = |u| /2.
• Compute y = P′u/H.
• Compute the transformation P′← P′−yuT .

� householder

The function householder in this module does the triangulization. It returns (d, c),
where d and c are vectors that contain the elements of the principal diagonal and the
subdiagonal, respectively. Only the upper triangular portion is reduced to the trian-
gular form. The part below the principal diagonal is used to store the vectors u. This is
done automatically by the statement u = a[k+1:n,k], which does not create a new
object u, but simply sets up a reference to a[k+1:n,k] (makes a deep copy). Thus,
any changes made to u are reflected in a[k+1:n,k].

The function computeP returns the accumulated transformation matrix P. There
is no need to call it if only the eigenvalues are to be computed.

## module householder

’’’ d,c = householder(a).

Householder similarity transformation of matrix [a] to

the tridiagonal form [c\d\c].

p = computeP(a).

Computes the acccumulated transformation matrix [p]

after calling householder(a).

’’’

from numpy import dot,diagonal,outer,identity

from math import sqrt

def householder(a):

n = len(a)

for k in range(n-2):

u = a[k+1:n,k]

uMag = sqrt(dot(u,u))

if u[0] < 0.0: uMag = -uMag
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356 Symmetric Matrix Eigenvalue Problems

u[0] = u[0] + uMag

h = dot(u,u)/2.0

v = dot(a[k+1:n,k+1:n],u)/h

g = dot(u,v)/(2.0*h)

v = v - g*u

a[k+1:n,k+1:n] = a[k+1:n,k+1:n] - outer(v,u) \

- outer(u,v)

a[k,k+1] = -uMag

return diagonal(a),diagonal(a,1)

def computeP(a):

n = len(a)

p = identity(n)*1.0

for k in range(n-2):

u = a[k+1:n,k]

h = dot(u,u)/2.0

v = dot(p[1:n,k+1:n],u)/h

p[1:n,k+1:n] = p[1:n,k+1:n] - outer(v,u)

return p

EXAMPLE 9.7
Transform the matrix

A =

⎡
⎢⎢⎢⎣

7 2 3 −1
2 8 5 1
3 5 12 9

−1 1 9 7

⎤
⎥⎥⎥⎦

into tridiagonal form.

Solution Reduce the first row and column:

A′ =

⎡
⎢⎣8 5 1

5 12 9
1 9 7

⎤
⎥⎦ x =

⎡
⎢⎣ 2

3
−1

⎤
⎥⎦ k = |x| = 3. 7417

u =

⎡
⎢⎣k + x1

x2

x3

⎤
⎥⎦ =

⎡
⎢⎣5.7417

3
−1

⎤
⎥⎦ H = 1

2
|u|2 = 21. 484

uuT =

⎡
⎢⎣ 32.967 17 225 −5.7417

17.225 9 −3
−5.7417 −3 1

⎤
⎥⎦

Q = I−uuT

H
=

⎡
⎢⎣−0.53450 −0.80176 0.26725

−0.80176 0.58108 0.13964
0.26725 0.13964 0.95345

⎤
⎥⎦
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357 9.4 Householder Reduction to Tridiagonal Form

QA′Q =

⎡
⎢⎣ 10.642 −0.1388 −9.1294

−0.1388 5.9087 4.8429
−9.1294 4.8429 10.4480

⎤
⎥⎦

A ←
[

A 11
(
Qx
)T

Qx QA′Q

]
=

⎡
⎢⎢⎢⎣

7 −3.7417 0 0
−3.7417 10.642 −0. 1388 −9.1294

0 −0.1388 5.9087 4.8429
0 −9.1294 4.8429 10.4480

⎤
⎥⎥⎥⎦

In the last step, we used the formula Qx =
[
−k 0 · · · 0

]T
.

Reduce the second row and column:

A′ =
[

5.9087 4.8429
4.8429 10.4480

]
x =

[
−0.1388
−9.1294

]
k = − |x| = −9.1305

where the negative sign of k was determined by the sign of x1.

u =
[

k + x1

−9.1294

]
=
[

−9. 2693
−9.1294

]
H = 1

2
|u|2 = 84.633

uuT =
[

85.920 84.623
84.623 83.346

]

Q = I−uuT

H
=
[

0.01521 −0.99988
−0.99988 0.01521

]

QA′Q =
[

10.594 4.772
4.772 5.762

]

A ←

⎡
⎢⎣

A 11 A 12 0T

A 21 A 22
(
Qx
)T

0 Qx QA′Q

⎤
⎥⎦
⎡
⎢⎢⎢⎣

7 −3.742 0 0
−3.742 10.642 9.131 0

0 9.131 10.594 4.772
0 −0 4.772 5.762

⎤
⎥⎥⎥⎦

EXAMPLE 9.8
Use the function householder to tridiagonalize the matrix in Example 9.7; also de-
termine the transformation matrix P.

Solution

#!/usr/bin/python

## example9_8

from numpy import array

from householder import *
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a = array([[ 7.0, 2.0, 3.0, -1.0], \

[ 2.0, 8.0, 5.0, 1.0], \

[ 3.0, 5.0, 12.0, 9.0], \

[-1.0, 1.0, 9.0, 7.0]])

d,c = householder(a)

print "Principal diagonal {d}:\n", d

print "\nSubdiagonal {c}:\n",c

print "\nTransformation matrix [P]:"

print computeP(a)

raw_input("\nPress return to exit")

The results of running the foregoing program are:

Principal diagonal {d}:

[ 7. 10.64285714 10.59421525 5.76292761]

Subdiagonal {c}:

[-3.74165739 9.13085149 4.77158058]

Transformation matrix [P]:

[[ 1. 0. 0. 0. ]

[ 0. -0.53452248 -0.25506831 0.80574554]

[ 0. -0.80178373 -0.14844139 -0.57888514]

[ 0. 0.26726124 -0.95546079 -0.12516436]]

9.5 Eigenvalues of Symmetric Tridiagonal Matrices

Sturm Sequence

In principle, the eigenvalues of a matrix A can be determined by finding the roots of
the characteristic equation |A − λI| = 0. This method is impractical for large matri-
ces, because the evaluation of the determinant involves n3/3 multiplications. How-
ever, if the matrix is tridiagonal (we also assume it to be symmetric), its characteristic
polynomial

Pn(λ) = |A−λI| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

d1 − λ c1 0 0 · · · 0
c1 d2 − λ c2 0 · · · 0
0 c2 d3 − λ c3 · · · 0
0 0 c3 d4 − λ · · · 0
...

...
...

...
. . .

...
0 0 . . . 0 cn−1 dn − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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359 9.5 Eigenvalues of Symmetric Tridiagonal Matrices

can be computed with only 3(n − 1) multiplications using the following sequence of
operations:

P0(λ) = 1

P1(λ) = d1 − λ (9.49)

Pi (λ) = (di − λ)Pi−1(λ) − c2
i−1 Pi−2(λ), i = 2, 3, . . . , n

The polynomials P0(λ), P1(λ), . . . , Pn(λ) form a Sturm sequence that has the fol-
lowing property:

• The number of sign changes in the sequence P0(a), P1(a), . . . , Pn(a) is equal to
the number of roots of Pn(λ) that are smaller than a . If a member Pi (a) of the
sequence is zero, its sign is to be taken opposite to that of Pi−1(a).

As we see later, the Sturm sequence property makes it possible to bracket the
eigenvalues of a tridiagonal matrix.

� sturmSeq

Given d, c, and λ, the function sturmSeq returns the Sturm sequence

P0(λ), P1(λ), . . . Pn(λ)

The function numLambdas returns the number of sign changes in the sequence (as
noted before, this equals the number of eigenvalues that are smaller than λ).

## module sturmSeq

’’’ p = sturmSeq(c,d,lam).

Returns the Sturm sequence {p[0],p[1],...,p[n]}

associated with the characteristic polynomial

|[A] - lam[I]| = 0, where [A] = [c\d\c] is a n x n

tridiagonal matrix.

numLam = numLambdas(p).

Returns the number of eigenvalues of a tridiagonal

matrix [A] = [c\d\c] that are smaller than ’lam’.

Uses the Sturm sequence {p} obtained from ’sturmSeq’.

’’’

from numpy import ones

def sturmSeq(d,c,lam):

n = len(d) + 1

p = ones(n)

p[1] = d[0] - lam

for i in range(2,n):
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360 Symmetric Matrix Eigenvalue Problems

## if c[i-2] == 0.0: c[i-2] = 1.0e-12

p[i] = (d[i-1] - lam)*p[i-1] - (c[i-2]**2)*p[i-2]

return p

def numLambdas(p):

n = len(p)

signOld = 1

numLam = 0

for i in range(1,n):

if p[i] > 0.0: sign = 1

elif p[i] < 0.0: sign = -1

else: sign = -signOld

if sign*signOld < 0: numLam = numLam + 1

signOld = sign

return numLam

EXAMPLE 9.9
Use the Sturm sequence property to show that the smallest eigenvalue of A is in the
interval (0.25, 0.5), where

A =

⎡
⎢⎢⎢⎣

2 −1 0 0
−1 2 −1 0

0 −1 2 −1
0 0 −1 2

⎤
⎥⎥⎥⎦

Solution Taking λ = 0.5, we have di − λ = 1.5 and c2
i−1 = 1 and the Sturm sequence

in Eqs. (9.49) becomes

P0(0.5) = 1

P1(0.5) = 1.5

P2(0.5) = 1.5(1.5) − 1 = 1.25

P3(0.5) = 1.5(1.25) − 1.5 = 0.375

P4(0.5) = 1.5(0.375) − 1.25 = −0.6875

Because the sequence contains one sign change, there exists one eigenvalue smaller
than 0.5.

Repeating the process with λ = 0.25, we get di − λ = 1.75 and c2
i = 1, which re-

sults in the Sturm sequence

P0(0.25) = 1

P1(0.25) = 1.75

P2(0.25) = 1.75(1.75) − 1 = 2.0625

P3(0.25) = 1.75(2.0625) − 1.75 = 1.8594

P4(0.25) = 1.75(1.8594) − 2.0625 = 1.1915
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361 9.5 Eigenvalues of Symmetric Tridiagonal Matrices

There are no sign changes in the sequence, so that all the eigenvalues are greater than
0.25. We thus conclude that 0.25 < λ1 < 0.5.

Gerschgorin’s Theorem

Gerschgorin’s theorem is useful in determining the global bounds on the eigenval-
ues of an n × n matrix A. The term “global” means the bounds that enclose all the
eigenvalues. Here we give a simplified version for a symmetric matrix.

• If λ is an eigenvalue of A, then

ai − ri ≤ λ ≤ ai + ri , i = 1, 2, . . . , n

where

ai = Aii ri =
n∑

j=1
j �=i

∣∣Aij

∣∣ (9.50)

It follows that the limits on the smallest and the largest eigenvalues are given by

λmin ≥ min
i

(ai − ri ) λmax ≤ max
i

(ai + ri ) (9.51)

� gerschgorin

The function gerschgorin returns the lower and upper global bounds on the eigen-
values of a symmetric tridiagonal matrix A = [c\d\c].

## module gerschgorin

’’’ lamMin,lamMax = gerschgorin(d,c).

Applies Gerschgorin’s theorem to find the global bounds on

the eigenvalues of a tridiagomal matrix [A] = [c\d\c].

’’’

def gerschgorin(d,c):

n = len(d)

lamMin = d[0] - abs(c[0])

lamMax = d[0] + abs(c[0])

for i in range(1,n-1):

lam = d[i] - abs(c[i]) - abs(c[i-1])

if lam < lamMin: lamMin = lam

lam = d[i] + abs(c[i]) + abs(c[i-1])

if lam > lamMax: lamMax = lam

lam = d[n-1] - abs(c[n-2])

if lam < lamMin: lamMin = lam

lam = d[n-1] + abs(c[n-2])

if lam > lamMax: lamMax = lam

return lamMin,lamMax
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362 Symmetric Matrix Eigenvalue Problems

� EXAMPLE 9.10

Use Gerschgorin’s theorem to determine the bounds on the eigenvalues of the matrix

A =

⎡
⎢⎣ 4 −2 0

−2 4 −2
0 −2 5

⎤
⎥⎦

Solution Referring to Eqs. (9.50), we get

a1 = 4 a2 = 4 a3 = 5

r1 = 2 r2 = 4 r3 = 2

Hence,

λmin ≥ min(ai − ri ) = 4 − 4 = 0

λmax ≤ max(ai + ri ) = 4 + 4 = 8

Bracketing Eigenvalues

The Sturm sequence property together with Gerschgorin’s theorem provide us con-
venient tools for bracketing each eigenvalue of a symmetric tridiagonal matrix.

� lamRange

The function lamRange brackets the N smallest eigenvalues of a symmetric tridi-
agonal matrix A = [c\d\c]. It returns the sequence r0, r1, . . . , r N, where each interval(
ri−1, ri

)
contains exactly one eigenvalue. The algorithm first finds the bounds on all

the eigenvalues by Gerschgorin’s theorem. Then the method of bisection in conjunc-
tion with Sturm sequence property is used to determine r N, r N−1, . . . , r0 in that order.

## module lamRange

’’’ r = lamRange(d,c,N).

Returns the sequence {r[0],r[1],...,r[N]} that

separates the N lowest eigenvalues of the tridiagonal

matrix [A] = [c\d\c]; that is, r[i] < lam[i] < r[i+1].

’’’

from numpy import ones

from sturmSeq import *

from gerschgorin import *

def lamRange(d,c,N):

lamMin,lamMax = gerschgorin(d,c)

r = ones(N+1)

r[0] = lamMin

# Search for eigenvalues in descending order

for k in range(N,0,-1):
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363 9.5 Eigenvalues of Symmetric Tridiagonal Matrices

# First bisection of interval(lamMin,lamMax)

lam = (lamMax + lamMin)/2.0

h = (lamMax - lamMin)/2.0

for i in range(1000):

# Find number of eigenvalues less than lam

p = sturmSeq(d,c,lam)

numLam = numLambdas(p)

# Bisect again & find the half containing lam

h = h/2.0

if numLam < k: lam = lam + h

elif numLam > k: lam = lam - h

else: break

# If eigenvalue located, change the upper limit

# of search and record it in [r]

lamMax = lam

r[k] = lam

return r

EXAMPLE 9.11
Bracket each eigenvalue of the matrix A in Example 9.10.

Solution In Example 9.10 we found that all the eigenvalues lie in (0, 8). We now bisect
this interval and use the Sturm sequence to determine the number of eigenvalues in
(0, 4). With λ = 4, the sequence is – see Eqs. (9.49).

P0(4) = 1

P1(4) = 4 − 4 = 0

P2(4) = (4 − 4)(0) − 22(1) = −4

P3(4) = (5 − 4)(−4) − 22(0) = −4

Because a zero value is assigned, the sign opposite to that of the preceding member,
the signs in this sequence are (+, −, −, −). The one sign change shows the presence
of one eigenvalue in (0, 4).

Next, we bisect the interval (4, 8) and compute the Sturm sequence with λ = 6:

P0(6) = 1

P1(6) = 4 − 6 = −2

P2(6) = (4 − 6)(−2) − 22(1) = 0

P3(6) = (5 − 6)(0) − 22(−2) = 8

In this sequence the signs are (+, −, +, +), indicating two eigenvalues in (0, 6).
Therefore,

0 ≤ λ1 ≤ 4 4 ≤ λ2 ≤ 6 6 ≤ λ3 ≤ 8
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Computation of Eigenvalues

Once the desired eigenvalues are bracketed, they can be found by determining the
roots of Pn(λ) = 0 with bisection or Ridder’s method.

� eigenvals3

The function eigenvals3 computes N smallest eigenvalues of a symmetric tridiag-
onal matrix with the method of Ridder.

## module eigenvals3

’’’ lam = eigenvals3(d,c,N).

Returns the N smallest eigenvalues of a

tridiagonal matrix [A] = [c\d\c].

’’’

from lamRange import *

from ridder import *

from sturmSeq import sturmSeq

from numpy import zeros,float

def eigenvals3(d,c,N):

def f(x): # f(x) = |[A] - x[I]|

p = sturmSeq(d,c,x)

return p[len(p)-1]

lam = zeros(N)

r = lamRange(d,c,N) # Bracket eigenvalues

for i in range(N): # Solve by Ridder’s method

lam[i] = ridder(f,r[i],r[i+1])

return lam

EXAMPLE 9.12
Use eigenvals3 to determine the three smallest eigenvalues of the 100 × 100 matrix

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

2 −1 0 · · · 0
−1 2 −1 · · · 0

0 −1 2 · · · 0
...

...
. . .

. . .
...

0 0 · · · −1 2

⎤
⎥⎥⎥⎥⎥⎥⎦

Solution

#!/usr/bin/python

## example9_12

from numpy import ones
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from eigenvals3 import *

N = 3

n = 100

d = ones(n)*2.0

c = ones(n-1)*(-1.0)

lambdas = eigenvals3(d,c,N)

print lambdas

raw_input("\nPress return to exit")

Here are the eigenvalues:

[ 0.00096744 0.00386881 0.0087013 ]

Computation of Eigenvectors

If the eigenvalues are known (approximate values will be good enough), the best
means of computing the corresponding eigenvectors is the inverse power method
with eigenvalue shifting. This method was discussed before, but the algorithm listed
did not take advantage of banding. Here we present a version of the method written
for symmetric tridiagonal matrices.

� inversePower3

This function is very similar to inversePower listed in Section 9.3, but it executes
much faster because it exploits the tridiagonal structure of the matrix.

## module inversePower3

’’’ lam,x = inversePower3(d,c,s,tol=1.0e-6).

Inverse power method applied to a tridiagonal matrix

[A] = [c\d\c]. Returns the eigenvalue closest to ’s’

and the corresponding eigenvector.

’’’

from numpy import dot,zeros

from LUdecomp3 import *

from math import sqrt

from random import random

def inversePower3(d,c,s,tol=1.0e-6):

n = len(d)

e = c.copy()

cc = c.copy() # Save original [c]

dStar = d - s # Form [A*] = [A] - s[I]

LUdecomp3(cc,dStar,e) # Decompose [A*]

x = zeros(n)
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for i in range(n): # Seed [x] with random numbers

x[i] = random()

xMag = sqrt(dot(x,x)) # Normalize [x]

x =x/xMag

flag = 0

for i in range(30): # Begin iterations

xOld = x.copy() # Save current [x]

LUsolve3(cc,dStar,e,x) # Solve [A*][x] = [xOld]

xMag = sqrt(dot(x,x)) # Normalize [x]

x = x/xMag

if dot(xOld,x) < 0.0: # Detect change in sign of [x]

sign = -1.0

x = -x

else: sign = 1.0

if sqrt(dot(xOld - x,xOld - x)) < tol:

return s + sign/xMag,x

print ’Inverse power method did not converge’

EXAMPLE 9.13
Compute the 10th smallest eigenvalue of the matrix A given in Example 9.12.

Solution The following program extracts the Nth eigenvalue of A by the inverse
power method with eigenvalue shifting:

#!/usr/bin/python

## example9_13

from numpy import ones

from lamRange import *

from inversePower3 import *

N = 10

n = 100

d = ones(n)*2.0

c = ones(n-1)*(-1.0)

r = lamRange(d,c,N) # Bracket N smallest eigenvalues

s = (r[N-1] + r[N])/2.0 # Shift to midpoint of Nth bracket

lam,x = inversePower3(d,c,s) # Inverse power method

print "Eigenvalue No.",N," =",lam

raw_input("\nPress return to exit")

The result is

Eigenvalue No. 10 = 0.0959737849345

EXAMPLE 9.14
Compute the three smallest eigenvalues and the corresponding eigenvectors of the
matrix A in Example 9.5.
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367 9.5 Eigenvalues of Symmetric Tridiagonal Matrices

Solution

#!/usr/bin/python

## example9_14

from householder import *

from eigenvals3 import *

from inversePower3 import *

from numpy import array,zeros,dot

N = 3 # Number of eigenvalues requested

a = array([[ 11.0, 2.0, 3.0, 1.0, 4.0], \

[ 2.0, 9.0, 3.0, 5.0, 2.0], \

[ 3.0, 3.0, 15.0, 4.0, 3.0], \

[ 1.0, 5.0, 4.0, 12.0, 4.0], \

[ 4.0, 2.0, 3.0, 4.0, 17.0]])

xx = zeros((len(a),N))

d,c = householder(a) # Tridiagonalize [A]

p = computeP(a) # Compute transformation matrix

lambdas = eigenvals3(d,c,N) # Compute eigenvalues

for i in range(N):

s = lambdas[i]*1.0000001 # Shift very close to eigenvalue

lam,x = inversePower3(d,c,s) # Compute eigenvector [x]

xx[:,i] = x # Place [x] in array [xx]

xx = dot(p,xx) # Recover eigenvectors of [A]

print "Eigenvalues:\n",lambdas

print "\nEigenvectors:\n",xx

raw_input("Press return to exit")

Eigenvalues:

[ 4.87394638 8.66356791 10.93677451]

Eigenvectors:

[[ 0.26726603 0.72910002 0.50579164]

[-0.74142854 0.41391448 -0.31882387]

[-0.05017271 -0.4298639 0.52077788]

[ 0.59491453 0.06955611 -0.60290543]

[-0.14970633 -0.32782151 -0.08843985]]

PROBLEM SET 9.2

1. Use Gerschgorin’s theorem to determine bounds on the eigenvalues of

(a) A =

⎡
⎢⎣ 10 4 −1

4 2 3
−1 3 6

⎤
⎥⎦ (b) B =

⎡
⎢⎣ 4 2 −2

2 5 3
−2 3 4

⎤
⎥⎦
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368 Symmetric Matrix Eigenvalue Problems

2. Use the Sturm sequence to show that

A =

⎡
⎢⎢⎢⎣

5 −2 0 0
−2 4 −1 0

0 −1 4 −2
0 0 −2 5

⎤
⎥⎥⎥⎦

has one eigenvalue in the interval (2, 4).
3. Bracket each eigenvalue of

A =

⎡
⎢⎣ 4 −1 0

−1 4 −1
0 −1 4

⎤
⎥⎦

4. Bracket each eigenvalue of

A =

⎡
⎢⎣6 1 0

1 8 2
0 2 9

⎤
⎥⎦

5. Bracket every eigenvalue of

A =

⎡
⎢⎢⎢⎣

2 −1 0 0
−1 2 −1 0

0 −1 2 −1
0 0 −1 1

⎤
⎥⎥⎥⎦

6. Tridiagonalize the matrix

A =

⎡
⎢⎣12 4 3

4 9 3
3 3 15

⎤
⎥⎦

with the Householder reduction.
7. Use the Householder reduction to transform the matrix

A =

⎡
⎢⎢⎢⎣

4 −2 1 −1
−2 4 −2 1

1 −2 4 −2
−1 1 −2 4

⎤
⎥⎥⎥⎦

to tridiagonal form.
8. � Compute all the eigenvalues of

A =

⎡
⎢⎢⎢⎢⎢⎣

6 2 0 0 0
2 5 2 0 0
0 2 7 4 0
0 0 4 6 1
0 0 0 1 3

⎤
⎥⎥⎥⎥⎥⎦
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369 9.5 Eigenvalues of Symmetric Tridiagonal Matrices

9. � Find the smallest two eigenvalues of

A =

⎡
⎢⎢⎢⎣

4 −1 0 1
−1 6 −2 0

0 −2 3 2
1 0 2 4

⎤
⎥⎥⎥⎦

10. � Compute the three smallest eigenvalues of

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

7 −4 3 −2 1 0
−4 8 −4 3 −2 1

3 −4 9 −4 3 −2
−2 3 −4 10 −4 3

1 −2 3 −4 11 −4
0 1 −2 3 −4 12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

and the corresponding eigenvectors.
11. � Find the two smallest eigenvalues of the 6 × 6 Hilbert matrix

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1/2 1/3 · · · 1/6
1/2 1/3 1/4 · · · 1/7
1/3 1/4 1/5 · · · 1/7

...
...

...
. . .

...
1/8 1/9 1/10 · · · 1/11

⎤
⎥⎥⎥⎥⎥⎥⎦

Recall that this matrix is ill conditioned.
12. � Rewrite the function lamRange(d,c,N) so that it will bracket the N largest

eigenvalues of a tridiagonal matrix. Use this function to compute the two largest
eigenvalues of the Hilbert matrix in Example 9.11.

13. �

m 2m3m
kk k k

u u u1 2 3

The differential equations of motion of the mass–spring system are

k (−2u1 + u2) = mü1

k(u1 − 2u2 + u3) = 3mü2

k(u2 − 2u3) = 2mü3

where ui (t ) is the displacement of mass i from its equilibrium position and k is
the spring stiffness. Substituting ui (t ) = yi sin ωt , we obtain the matrix eigenvalue
problem ⎡

⎢⎣ 2 −1 0
−1 2 −1

0 −1 2

⎤
⎥⎦
⎡
⎢⎣ y1

y2

y3

⎤
⎥⎦ = mω2

k

⎡
⎢⎣1 0 0

0 3 0
0 0 2

⎤
⎥⎦
⎡
⎢⎣ y1

y2

y3

⎤
⎥⎦
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370 Symmetric Matrix Eigenvalue Problems

Determine the circular frequencies ω and the corresponding relative amplitudes
yi of vibration.

14. �

u u u

m
k k k1 2 n

21 n

mm
k3

The figure shows n identical masses connected by springs of different stiffnesses.
The equation governing free vibration of the system is Au = mω2u, where ω is the
circular frequency and

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k1 + k2 −k2 0 0 · · · 0
−k2 k2 + k3 −k3 0 · · · 0

0 −k3 k3 + k4 −k4 · · · 0
...

...
. . .

. . .
. . .

...
0 · · · 0 −kn−1 kn−1 + kn −kn

0 · · · 0 0 −kn kn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Given the spring stiffnesses k =
[

k1 k2 · · · kn

]T
, write a program that com-

putes the N lowest eigenvalues λ = mω2 and the corresponding eigenvectors.
Run the program with N = 4 and

k =
[

400 400 400 0.2 400 400 200
]T

kN/m

Note that the system is weakly coupled, k4 being small. Do the results make
sense?

15. �

1 n2

L x

The differential equation of motion of the axially vibrating bar is

u′′ = ρ

E
ü

where u(x, t ) is the axial displacement, ρ represents the mass density, and E is the
modulus of elasticity. The boundary conditions are u(0, t ) = u′(L , t ) = 0. Letting
u(x, t ) = y(x) sin ωt , we obtain

y ′′ = −ω2 ρ

E
y y(0) = y ′(L) = 0
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371 9.5 Eigenvalues of Symmetric Tridiagonal Matrices

The corresponding finite difference equations are⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0 0 · · · 0
−1 2 −1 0 · · · 0

0 −1 2 −1 · · · 0
...

...
. . .

. . .
. . .

...
0 0 · · · −1 2 −1
0 0 · · · 0 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1

y2

y3

...
yn−1

yn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
(

ωL
n

)2
ρ

E

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1

y2

y3

...
yn−1

yn/2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(a) If the standard form of these equations is Hz = λz, write down H and the
transformation matrix P in y = Pz. (b) Compute the lowest circular frequency of
the bar with n = 10, 100, and 1000 utilizing the module inversePower3. Note:
The analytical solution is ω1 = π

√
E/ρ/ (2L).

16. �

1 2P nn -1

L

xP
u

k

The simply supported column is resting on an elastic foundation of stiffness k
(N/m per meter length). An axial force P acts on the column. The differential
equation and the boundary conditions for the lateral displacement u are

u(4) + P
E I

u′′ + k
E I

u = 0

u(0) = u′′(0) = u(L) = u′′(L) = 0

Using the mesh shown, the finite difference approximation of these equations is

(5 + α)u1 − 4u2 + u3 = λ(2u1 − u2)

−4u1 + (6 + α)u2 − 4u3 + u4 = λ(−u1 + 2u2 + u3)

u1 − 4u2 + (6 + α)u3 − 4u4 + u5 = λ(−u2 + 2u3 − u4)

...

un−3 − 4un−2 + (6 + α)un−1 − 4un = λ(−un−2 + 4un−1 − un)

un−2 − 4un−1 + (5 + α)un = λ(−un−1 + 2un)

where

α = kh4

E I
= 1

(n + 1)4

k L4

E I
λ = Ph2

E I
= 1

(n + 1)2

P L2

E I

Write a program that computes the lowest three buckling loads P and the corre-
sponding mode shapes. Run the program with k L4/(E I ) = 1000 and n = 25.
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372 Symmetric Matrix Eigenvalue Problems

17. � Find the five smallest eigenvalues of the 20 × 20 matrix

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 1 0 0 · · · 0 1
1 2 1 0 · · · 0 0
0 1 2 1 · · · 0 0
...

...
. . .

. . .
. . .

...
...

0 0 · · · 1 2 1 0
0 0 · · · 0 1 2 1
1 0 · · · 0 0 1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Note: this is a difficult matrix that has many pairs of double eigenvalues.
18. �

L

P

θ

x
y

z

When the depth/width ratio of a beam is large, lateral buckling may occur.
The differential equation that governs lateral buckling of the cantilever beam
shown is

d2θ

dx2
+ γ 2

(
1 − x

L

)2
θ = 0

where θ is the angle of rotation of the cross section and

γ 2 = P2 L2

(G J )(E Iz)

G J = torsional rigidity

E Iz = bending rigidity about the z-axis

The boundary conditions are θ |x=0 = 0 and dθ/dx|x=L = 0. Using the finite dif-
ference approximation of the differential equation, determine the buckling load
Pcr . The analytical solution is

Pcr = 4.013

√
(G J )(E Iz)

L2
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9.6 Other Methods

On occasions when all the eigenvalues and eigenvectors of a matrix are required, the
OR algorithm is a worthy contender. It is based on the decomposition A = QR, where
Q and R are orthogonal and upper-triangular matrices, respectively. The decompo-
sition is carried out in conjunction with the Householder transformation. There is
also a QL algorithm A = QL that works in the same manner, but here L is a lower
triangular matrix.

Schur’s factorization is another solid technique for determining the eigenvalues
of A. Here the decomposition is A = QT UQ, where Q is orthogonal and U is an upper
triangular matrix. The diagonal terms of U are the eigenvalues of A.

The LR algorithm is probably the fastest means of computing the eigenvalues; it
is also very simple to implement – see Prob. 22 of Problem Set 9.1. But its stability is
inferior to that of the other methods.
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